(A)
n1 = 50
n2 = 50
p1 = 0.08
p2 = 0.2
% = 98
Pooled Proportion, p = (n1 p1 + n2 p2)/(n1 + n2) = (50 * 0.08 + 50 * 0.2)/(50 + 50) = 0.14
q = 1 - p = 1 - 0.14 = 0.86
SE = √(pq * ((1/n1) + (1/n2))) = √(0.14 * 0.86 * ((1/50) + (1/50))) = 0.069397406
z- score = 2.326347874
Width of the confidence interval = z * SE = 2.32634787404085 * 0.0693974062915899 = 0.161442509
Lower Limit of the confidence interval = (p1 - p2) - width = -0.12 - 0.161442508590389 = -0.281442509
Upper Limit of the confidence interval = (p1 - p2) + width = -0.12 + 0.161442508590389 = 0.041442509
The confidence interval is [-0.2814, 0.0414]
(B)
Data:
n1 = 50
n2 = 50
p1 = 0.08
p2 = 0.2
Hypotheses:
Ho: p1 = p2
Ha: p1 ≠ p2
Decision Rule:
α = 0.02
Lower Critical z- score = -2.326347874
Upper Critical z- score = 2.326347874
Reject Ho if |z| > 2.326347874
Test Statistic:
Average proportion, p = (n1p1 + n2p2)/(n1 + n2) = (50 * 0.08 + 50 * 0.2)/(50 + 50) = 0.14
q = 1 - p = 1 - 0.14 = 0.86
SE = √[pq * {(1/n1) + (1/n2)}] = √(0.14 * 0.86 * ((1/50) + (1/50))) = 0.069397406
z = (p1 - p2)/SE = (0.08 - 0.2)/0.0693974062915899 = -1.729171253
p- value = 0.08377845
Decision (in terms of the hypotheses):
Since 1.729171253 < 2.326347874 we fail to reject Ho
Conclusion (in terms of the problem):
There is no sufficient evidence that the two dice give different proportions of a 6
(C)
p- value = 0.08377845
Get Answers For Free
Most questions answered within 1 hours.