Question

It has been found that the average time Internet users spend online per week is 18.3...

It has been found that the average time Internet users spend online per week is 18.3 hours. A random sample of LaTeX: n=48 n = 48 teenagers indicated that their mean amount of Internet time per week is LaTeX: \bar{x}=20.9 x ¯ = 20.9 , with a population standard deviation of LaTeX: \sigma=5.7 σ = 5.7 hours. At the LaTeX: \alpha=0.02 α = 0.02 level of significance, can it be concluded that the mean time differs from 18.3 hours per week?

Homework Answers

Answer #1

This is the two tailed test .

The null and alternative hypothesis is

H0 :   = 18.3

Ha : 18.3

Test statistic = z

= ( - ) / / n

= (20.9 - 18.3) / 5.7 / 48

Test statistic = 3.16

P(z > 3.16) = 1 - P(z < 3.16) = 0.0008

P-value = 2 * 0.0008 = 0.0016

= 0.02

P-value <

Reject the null hypothesis .

There is sufficient evidence to conclude that the  mean time differs from 18.3 hours per week .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The time married men with children spend on child care averages 6.1 hours per week (Time,...
The time married men with children spend on child care averages 6.1 hours per week (Time, March 12, 2012). You belong to a professional group on family practices that would like to do its own study to determine if the time married men in your area spend on child care per week differs from the reported mean of 6.1 hours per week. A sample of 40 married couples will be used with the data collected showing the hours per week...
12. In order to estimate the mean amount of time computer users spend on the internet...
12. In order to estimate the mean amount of time computer users spend on the internet each​ month, how many computer users must be surveyed in order to be 90​% confident that your sample mean is within 15 minutes of the population​ mean? Assume that the standard deviation of the population of monthly time spent on the internet is 211 min. What is a major obstacle to getting a good estimate of the population​ mean? Use technology to find the...
In order to estimate the mean amount of time computer users spend on the internet each​...
In order to estimate the mean amount of time computer users spend on the internet each​ month, how many computer users must be surveyed in order to be 95​% confident that your sample mean is in error by no more than 14 ​minutes? Assume that the standard deviation of the population of monthly time spent on the internet is 190 min. Use technology to find the estimated minimum required sample size. The minimum sample size required is __ computer users....
We want to know how many hours per week, on average, mothers spend with their preschool...
We want to know how many hours per week, on average, mothers spend with their preschool children. We draw a random sample of 300 mothers and find x bar=50.32 hours and s = 10.27 hours. What is the interval within which, with 95% confidence, the true mean number of hours a week all mothers spend with their preschool children falls? Please interpret this confidence interval too.
According to a certain​ survey, adults spend 2.25 hours per day watching television on a weekday....
According to a certain​ survey, adults spend 2.25 hours per day watching television on a weekday. Assume that the standard deviation for​ "time spent watching television on a​ weekday" is 1.93 hours. If a random sample of 50 adults is​ obtained, describe the sampling distribution of x overbarx​, the mean amount of time spent watching television on a weekday. x overbarx is approximately normal with mu Subscript x overbarμxequals=2.25 and sigma Subscript x overbarσxequals=0.272943 ​(Round to six decimal places as​...
We are interested in the average amount of time De Anza students spend studying statistics each...
We are interested in the average amount of time De Anza students spend studying statistics each week. A survey of 32 De Anza students yields a sample average time of 14.4 hours spent studying statistics per week with a sample standard deviation of 1.9 hours. Conduct a hypothesis test using a 5% level of significance, to determine if the average time spent studying statistics each week by De Anza students is less than 15 hours. 1. Ho: _______________ Ha: ___________________...
Jane is interested in knowing if people spend more time per week reading than watching television....
Jane is interested in knowing if people spend more time per week reading than watching television. She asked 10 people and is using this data as a sample. Her hypotheses are: HO : µ1 ≥ µ2 HA : µ1 < µ2 µ1 is the average amount of time spent reading and µ2 is the average amount of time spent watching television. The sample statistics are: Reading Watching TV Sample Mean, x 4.8                              5.5 Sample Standard Deviation, s                 5.47                           2.41 Sample...
1. The belief is that the mean number of hours per week of part-time work of...
1. The belief is that the mean number of hours per week of part-time work of high school seniors in a city is 10.7 hours. Data from a simple random sample of 28 seniors indicated that their mean number of parttime work was 12.5 with a standard deviation of 1.3. Test whether these data cast doubt on the current belief. (use α = 0.05) a.)State your null and alternative hypotheses. b.)Sketch the rejection region. c.) Calculate the test statistic. Plot...