Use ? to approximate σ. Use a 5% level of significance.
Data:
69
62
75
66
68
57
61
84
61
77
62
71
68
69
79
76
87
78
73
89
81
73
64
65
73
69
57
79
78
80
79
81
73
74
84
83
82
85
86
77
72
79
59
64
65
82
64
70
83
89
69
73
84
76
79
81
80
74
77
66
68
77
79
78
77
The given data is inputted in EXCEL and the following computations are made to obtain the sample standard deviation here:
X | (X - Mean(X))^2 | |
69 | 26.56213018 | |
62 | 147.7159763 | |
75 | 0.715976331 | |
66 | 66.4852071 | |
68 | 37.86982249 | |
57 | 294.2544379 | |
61 | 173.0236686 | |
84 | 96.94674556 | |
61 | 173.0236686 | |
77 | 8.100591716 | |
62 | 147.7159763 | |
71 | 9.946745562 | |
68 | 37.86982249 | |
69 | 26.56213018 | |
79 | 23.4852071 | |
76 | 3.408284024 | |
87 | 165.0236686 | |
78 | 14.79289941 | |
73 | 1.331360947 | |
89 | 220.408284 | |
81 | 46.86982249 | |
73 | 1.331360947 | |
64 | 103.1005917 | |
65 | 83.79289941 | |
73 | 1.331360947 | |
69 | 26.56213018 | |
57 | 294.2544379 | |
79 | 23.4852071 | |
78 | 14.79289941 | |
80 | 34.17751479 | |
79 | 23.4852071 | |
81 | 46.86982249 | |
73 | 1.331360947 | |
74 | 0.023668639 | |
84 | 96.94674556 | |
83 | 78.25443787 | |
82 | 61.56213018 | |
85 | 117.6390533 | |
86 | 140.3313609 | |
77 | 8.100591716 | |
72 | 4.639053254 | |
79 | 23.4852071 | |
59 | 229.6390533 | |
64 | 103.1005917 | |
65 | 83.79289941 | |
82 | 61.56213018 | |
64 | 103.1005917 | |
70 | 17.25443787 | |
83 | 78.25443787 | |
89 | 220.408284 | |
69 | 26.56213018 | |
73 | 1.331360947 | |
84 | 96.94674556 | |
76 | 3.408284024 | |
79 | 23.4852071 | |
81 | 46.86982249 | |
80 | 34.17751479 | |
74 | 0.023668639 | |
77 | 8.100591716 | |
66 | 66.4852071 | |
68 | 37.86982249 | |
77 | 8.100591716 | |
79 | 23.4852071 | |
78 | 14.79289941 | |
77 | 8.100591716 | |
4820 | 4204.461538 |
The sample mean here is computed as:
Now the sample standard deviation here is computed as:
For n - 1 = 64 degrees of freedom, we have from chi square
distribution tables:
Also, we have here:
Therefore,
Therefore the 95% confidence interval for population standard deviation here is computed as:
this is the required 95% confidence interval for the population standard deviation here.
Get Answers For Free
Most questions answered within 1 hours.