Let S be a sample space and E and F be events associated with S. Suppose that
Pr left parenthesis Upper E right parenthesis equals 0.6Pr(E)=0.6,
Pr left parenthesis Upper F right parenthesis equals 0.2Pr(F)=0.2
and
Pr left parenthesis Upper E intersect Upper F right parenthesis equals 0.1Pr(E∩F)=0.1.
Calculate the following probabilities.
(a) Pr left parenthesis E|F right parenthesisPr(E|F) |
(b) Pr left parenthesis F|E right parenthesisPr(F|E) |
(c) Pr left parenthesis E| Upper F prime right parenthesisPrE|F′ |
(d) Pr left parenthesis Upper E prime | Upper F prime right parenthesisPrE′|F′ |
Solution :
Given that,
P(E) = 0.6
P(F) = 0.2 and P(F') = 1 - P(F) = 1 - 0.2 = 0.8
P(E F) = 0.1
P(E F) = P(E) + P(F) - P(E F) = 0.6 + 0.2 - 0.1 = 0.7
(a)
P(E | F) = P(E F) / P(F) = 0.1 / 0.2 = 0.5
(b)
P(F | E) = P(E F) / P(E) = 0.1 / 0.6 = 0.1667
(c)
P(E | F') = P(E F') / P(F') = [P(E) - P(E F)] / P(F')
= [0.6 - 0.1] / 0.8
= 0.5 / 0.8
= 0.625
P(E | F') = 0.625
(d)
P(E' | F') = P(E' F') / P(F')
= [1 - P(E F)] / 0.8
= [1 - 0.7] / 0.8
= 0.3 / 0.8
= 0.375
P(E' | F') = 0.375
Get Answers For Free
Most questions answered within 1 hours.