Question

I need solution and formula as clear.Otherwise , I will have to report the answer. Assume...

I need solution and formula as clear.Otherwise , I will have to report the answer.

Assume that X and Y has a continuous joint p.d.f. as 28x2y3 in 0<y<x<1 interval. Otherwise the joint p.d.f. is equal to 0.

  1. Prove that the mentioned f(x,y) is a joint probability density function.
  2. Calculate E(X)
  3. Calculate E(Y)
  4. Calculate E(X2)
  5. Calculate E(XY)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that X and Y has a continuous joint p.d.f. as (28x^2)*(y^3) in 0<y<x<1 interval. Otherwise...
Assume that X and Y has a continuous joint p.d.f. as (28x^2)*(y^3) in 0<y<x<1 interval. Otherwise the joint p.d.f. is equal to 0. Prove that the mentioned f(x,y) is a joint probability density function. Calculate E(X) Calculate E(Y) Calculate E(X2) Calculate Var(X) Calculate E(XY) Calculate P(X< 0.1) Calculate P(X> 0.1) Calculate P(X>2) Calculate P(-2<X<0.1)
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y...
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y (x, y) = k(x + y^2) if 0 < x < 1 and 0 < y < 1 0 otherwise. Find the following: I: The expectation of XY , E(XY ). J: The covariance of X and Y , Cov(X; Y ).
The length of time it takes a baseball player to swing a bat (in seconds) is...
The length of time it takes a baseball player to swing a bat (in seconds) is a continuous random variable X with probability density function (p.d.f) f(x) = ax+ 8/9 for 0<= x <= b and f(x) = 0 otherwise. a) determine the unique values of a and b necessary to ensure that the function f(x) is a valid p.d.f with mean equal to 2/3. b) calculate the median and standard deviation of X
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf                     f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1   0 < x2 < 1 , otherwise             (ii) Calculate E(X1) and E(X2)     (iii) Are the variables X1 ­and X2 stochastically independent? Given the variables in question 1, find the conditional p.d.f. of X1 given 0<x2< ½ and the conditional expectation E[X1|0<x2< ½ ].
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y)...
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y) = 2 , 0 < x < y < 1 = 0, otherwise Calculate P(x+y >1)
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT