Question

How many Hamiltonian circuits are there in a complete graph with 8 vertices? ?Notes: (The answer...

How many Hamiltonian circuits are there in a complete graph with 8 vertices?
?Notes: (The answer is not 7 and the answer is not 5040)

Homework Answers

Answer #1

I mean for n vertices, I choose any 2 vertices (that's an edge) and for each other vertex by connecting from each vertex from my edge by new edges, I can create a triangle, which is a Hamiltonian circle of size 3 and so on. But there are a lot of repeats and that's a mess.

we know that circular permutations there fore we have

(n?1)! is the possibilities to order n different elements in a circle.

also each vertex degree is 2

hence (n-1)!/2

therefore (8-1)!/2 = 2520

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
Give an example of a connected undirected graph that contains at least twelve vertices that contains...
Give an example of a connected undirected graph that contains at least twelve vertices that contains at least two circuits. Draw that graph labeling the vertices with letters of the alphabet. Determine one spanning tree of that graph and draw it. Determine whether the graph has an Euler circuit. If so, specify the circuit by enumerating the vertices involved. Determine whether the graph has an Hamiltonian circuit. If so, specify the circuit by enumerating the vertices involved.
G is a complete bipartite graph on 7 vertices. G is planar, and it has an...
G is a complete bipartite graph on 7 vertices. G is planar, and it has an Eulerian path. Answer the questions, and explain your answers. 1. How many edges does G have? 2. How many faces does G have? 3. What is the chromatic number of G?
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
a tree is a connected graph without cycles. How many non isomorphic trees with 5 vertices...
a tree is a connected graph without cycles. How many non isomorphic trees with 5 vertices exist?
Suppose that a connected planar graph has eight vertices each of degree 3 then how many...
Suppose that a connected planar graph has eight vertices each of degree 3 then how many regions does it have?And suppose that a polyhedron has 12 triangular faces then determine the number of edges and vertices.
Given a tree with p vertices, how many edges must you add without adding vertices to...
Given a tree with p vertices, how many edges must you add without adding vertices to obtain a maximal planar graph?
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by......
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by... a) Using theorem Ʃv∈V = d(v) = 2|E|. b) Using induction on the number of vertices, n for n ≥ 2.
6. If a graph G has n vertices, all of which but one have odd degree,...
6. If a graph G has n vertices, all of which but one have odd degree, how many vertices of odd degree are there in G, the complement of G? 7. Showthatacompletegraphwithmedgeshas(1+8m)/2vertices.
Prove that a simple graph with p vertices and q edges is complete (has all possible...
Prove that a simple graph with p vertices and q edges is complete (has all possible edges) if and only if q=p(p-1)/2. please prove it step by step. thanks