Refer to the Lincolnville School District bus data.
A. Select the variable for the number of miles traveled last month. Conduct a hypothesis test to determine whether the mean miles traveled last month equals 10,000. Use the .01 significance level. Find the p-value and explain what it means.
B. A study of school bus fleets reports that the average per bus maintenance cost is $4,000 per year. Using the maintenance cost variable, conduct a hypothesis test to determine whether the mean maintenance cost for Lincolnville’s bus fleet is more than $4,000 at the .05 significance level. Determine the p-value and report the results.
Please use excel to find results.
Miles | Maintenance Cost |
11973 | 4646 |
11969 | 1072 |
11967 | 9394 |
11948 | 1078 |
11925 | 1008 |
11922 | 5329 |
11896 | 4794 |
11889 | 3952 |
11837 | 3742 |
11814 | 4376 |
11800 | 4832 |
11798 | 5160 |
11789 | 1955 |
11782 | 2775 |
11781 | 5352 |
11778 | 3065 |
11757 | 3143 |
11707 | 1569 |
11704 | 7766 |
11698 | 3743 |
11698 | 2540 |
11691 | 4342 |
11668 | 3361 |
11662 | 3097 |
11615 | 8263 |
11610 | 4218 |
11576 | 2028 |
11533 | 5821 |
11518 | 9069 |
11462 | 3011 |
11461 | 9193 |
11418 | 4795 |
11359 | 505 |
11358 | 2732 |
11344 | 3754 |
11342 | 4640 |
11336 | 8410 |
11248 | 5922 |
11231 | 4364 |
11222 | 3190 |
11168 | 3213 |
11148 | 4139 |
11127 | 3560 |
11112 | 3920 |
11100 | 6733 |
11048 | 3770 |
11018 | 5168 |
11003 | 7380 |
10945 | 3656 |
10911 | 6213 |
10902 | 4279 |
10802 | 10575 |
10802 | 4752 |
10760 | 3809 |
10759 | 3769 |
10755 | 2152 |
10726 | 2985 |
10724 | 4563 |
10674 | 4723 |
10662 | 1826 |
10633 | 1061 |
10591 | 3527 |
10551 | 9669 |
10518 | 2116 |
10473 | 6212 |
10355 | 6927 |
10344 | 1881 |
10315 | 7004 |
10235 | 5284 |
10227 | 3173 |
10210 | 10133 |
10209 | 2356 |
10167 | 3124 |
10140 | 5976 |
10128 | 5408 |
10095 | 3690 |
10081 | 9573 |
10075 | 2470 |
10055 | 6863 |
10000 | 4513 |
A.
Sample mean using excel function AVERAGE(), x̅ = 11120.425
Sample standard deviation using excel function STDEV.S, s = 615.8518
Sample size, n = 80
Null and Alternative hypothesis:
Ho : µ = 10000
H1 : µ ≠ 10000
Test statistic:
t = (x̅- µ)/(s/√n) = (11120.425 - 10000)/(615.8518/√80) = 16.2724
df = n-1 = 79
p-value :
Two tailed p-value = T.DIST.2T(ABS(16.2724), 79) = 0.0000
Decision:
p-value < α, Reject the null hypothesis.
There is not enough evidence to support the claim that the mean miles traveled last month equals 10,000 at 0.01 significance level.
-------------------------------------------------
B.
Sample mean using excel function AVERAGE(), x̅ = 4551.8875
Sample standard deviation using excel function STDEV.S, s = 2331.533108
Sample size, n = 80
Null and Alternative hypothesis:
Ho : µ ≤ 4000
H1 : µ > 4000
Test statistic:
t = (x̅- µ)/(s/√n) = (4551.8875 - 4000)/(2331.5331/√80) = 2.1172
df = n-1 = 79
p-value :
Right tailed p-value = T.DIST.RT(2.1172, 79) = 0.0187
Decision:
p-value < α, Reject the null hypothesis.
There is enough evidence to conclude that the mean maintenance cost for Lincolnville’s bus fleet is more than $4,000 at the .05 significance level.
Get Answers For Free
Most questions answered within 1 hours.