Question

The heights of fully grown trees of a specific species are normally​ distributed, with a mean...

The heights of fully grown trees of a specific species are normally​ distributed, with a mean of 78.5 feet and a standard deviation of 7.50 feet. Random samples of size 17 are drawn from the population. Use the central limit theorem​ (CLT) to find the mean and standard error of the sampling distribution. The mean of the sampling distribution is mu Subscript x overbarequals nothing. The standard error of the sampling distribution is Ooverbarre is

Homework Answers

Answer #1

Solution :

Given that,

mean = = 78.5

standard deviation = = 7.50

n = 17

=78.5

= / n = 7.50 / 17 = 1.8190

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The heights of fully grown trees of a specific species are normally​ distributed, with a mean...
The heights of fully grown trees of a specific species are normally​ distributed, with a mean of 62.062.0 feet and a standard deviation of 6.756.75 feet. Random samples of size 1616 are drawn from the population. Use the central limit theorem to find the mean and standard error of the sampling distribution. Then sketch a graph of the sampling distribution. The mean of the sampling distribution is mu Subscript x overbarμxequals=nothing. The standard error of the sampling distribution is sigma...
The heights of fully grown trees of a specific species are normally​ distributed, with a mean...
The heights of fully grown trees of a specific species are normally​ distributed, with a mean of 72.5 feet and a standard deviation of 7.50 feet. Random samples of size 15 are drawn from the population. Use the central limit theorem to find the mean and standard error of the sampling distribution. Then sketch a graph of the sampling distribution.
The heights of fully grown trees of a specific species are normally​ distributed, with a mean...
The heights of fully grown trees of a specific species are normally​ distributed, with a mean of 61.0 feet and a standard deviation of 6.00 feet. Random samples of size 19 are drawn from the population. Use the central limit theorem to find the mean and standard error of the sampling distribution. Then sketch a graph of the sampling distribution. The mean of the sampling distribution is ?. The standard error of the sampling distribution is ?
Use the central limit theorem to find the mean and standard error of the mean of...
Use the central limit theorem to find the mean and standard error of the mean of the indicated sampling distribution. Then sketch a graph of the sampling distribution. The per capita consumption of red meat by people in a country in a recent year was normally​ distributed, with a mean of 111 pounds and a standard deviation of 38.7 pounds. Random samples of size 17 are drawn from this population and the mean of each sample is determined. mu Subscript...
The heights of pecan trees are normally distributed with a mean of 10 feet and a...
The heights of pecan trees are normally distributed with a mean of 10 feet and a standard deviation of 2 feet. 13. Show all work. Just the answer, without supporting work, will receive no credit. (a) What is the probability that a randomly selected pecan tree is between 9 and 12 feet tall? (Round the answer to 4 decimal places) (b) Find the 75th percentile of the pecan tree height distribution. (Round the answer to 2 decimal places) (c) For...
The heights of pecan trees are normally distributed with a mean of 10 feet and a...
The heights of pecan trees are normally distributed with a mean of 10 feet and a standard deviation of 2 feet. 13.Show all work. Just the answer, without supporting work, will receive no credit. (a)What is the probability that a randomly selected pecan tree is between 9 and 12 feet tall? (b)Find the 75th percentile of the pecan tree height distribution.
The heights of 1000 students are approximately normally distributed with a mean of 174.5 centimeters and...
The heights of 1000 students are approximately normally distributed with a mean of 174.5 centimeters and a standard deviation of 6.9 centimeters. Suppose 200 random samples of size 25 are drawn from this population and the means recorded to the nearest tenth of a centimeter. Determine (a) the mean and standard deviation of the sampling distribution of X¯; (b) the number of sample means that fall between 171 and 177 cm.
Data on salaries in the public school system are published annually by a​ teachers' association. The...
Data on salaries in the public school system are published annually by a​ teachers' association. The mean annual salary of​ (public) classroom teachers is ​$50.3 thousand. Assume a standard deviation of ​$8.8 thousand. Complete parts​ (a) through​ (e) below. a. Determine the sampling distribution of the sample mean for samples of size 64. The mean of the sample mean is mu Subscript x overbarequals​$ 50,300. ​(Type an integer or a decimal. Do not​ round.) The standard deviation of the sample...
Cherry trees in a certain orchard have heights that are normally distributed with mean μ =...
Cherry trees in a certain orchard have heights that are normally distributed with mean μ = 109 inches and standard deviation σ = 11 inches. Use the Cumulative Normal Distribution Table to answer the following. (a) Find the 23 rd percentile of the tree heights. (b) Find the 81 st percentile of the tree heights. (c) Find the second quartile of the tree heights. (d) An agricultural scientist wants to study the tallest 2 % of the trees to determine...
The amounts of time employees of a telecommunications company have worked for the company are normally...
The amounts of time employees of a telecommunications company have worked for the company are normally distributed with a mean of 5.6 years and a standard deviation of 1.9 years. Random samples of size 28 are drawn from the population and the mean of each sample is determined. Use the Central Limit Theorem to find the mean and standard error of the mean of the sampling distribution. ​(Round to two decimal places as needed​).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT