Question

TRUE or FALSE? Do not explain your answer. (a) If A and B are any independent...

TRUE or FALSE? Do not explain your answer.

(a) If A and B are any independent events, then P(A ∪ B) = P(A) + P(B).

(b) Every probability density function is a continuous function.

(c) Let X ∼ N(0, 1) and Y follow exponential distribution with parameter λ = 1. If X and Y are independent, then the m.g.f. MXY (t) = e t 2 /2 1 1−t .

(d) If X and Y have moment generating functions MX and MY , respectively, then M′ X+Y (0) = M′ X(0)+ M′ Y (0).

(e) The following function F is the cumulative distribution function of some random variable: F(x) = ⎧⎪⎪ ⎨ ⎪⎪⎩ e x−1 , if 0 < x < 1, 0, otherwise.

(f) If Cov(X, Y ) = 0, then X and Y are independent.

Homework Answers

Answer #1

a)If A and B are independent,

False

b)TRUE, the pdf is for a continuous variable and is a continuous function. Probability mass function is for a discrete variable and is a discrete function.

d)FALSE

e)F(0)=e^-1 and F(1)=1. The probabilty needs to start from 0 and reach 1. Hence, this is not a cdf. False

f)If Cov(X,Y)=0, the events are mutually exclusive but need not be independent. False

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE...
(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE / FALSE If Cov(X,Y) = 0, then X and Y are independent. (c) TRUE / FALSE If P(A) = 0.5 and P(B) = 0.5, then P(AB) = 0.25. (d) TRUE / FALSE There exist events A,B with P(A)not equal to 0 and P(B)not equal to 0 for which A and B are both independent and mutually exclusive. (e) TRUE / FALSE Var(X+Y) = Var(X)...
Given the exponential distribution f(x) = λe^(−λx), where λ > 0 is a parameter. Derive the...
Given the exponential distribution f(x) = λe^(−λx), where λ > 0 is a parameter. Derive the moment generating function M(t). Further, from this mgf, find expressions for E(X) and V ar(X).
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all...
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all t Find the probability mass function of X. (ii) Let X and Y be two independent continuous random variables with moment generating functions MX(t)=1/sqrt(1-t) and MY(t)=1/(1-t)^3/2, t<1 Calculate E(X+Y)^2
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t)...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t) Find E(X) using the moment generating function 2. If X1 , X2 , X3  are independent and have means 4, 9, and 3, and variencesn3, 7, and 5. Given that Y = 2X1  -  3X2  + 4X3. find the mean of Y variance of  Y. 3. A safety engineer claims that 2 in 12 automobile accidents are due to driver fatigue. Using the formula for Binomial Distribution find the...
Let S4 = X1 + ... + X4 is the sum of 4 independent random variables,...
Let S4 = X1 + ... + X4 is the sum of 4 independent random variables, and each Xi is exponential with λ = 3. Find the moment generating function m(t) for S4. Also find m′(0) and m′′(0)
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
a. Show that MmX +n (t) = ent MX (tm), for any constants m and n...
a. Show that MmX +n (t) = ent MX (tm), for any constants m and n and the moment generating function for X being MX b. If X is a geometric random variable with p in (0,1).Compute the moment generating function of X. Determine the μ and σ2 from the moment generating function.
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as...
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as a probability function for a continuous random variable; find a. c. b. The moment generating function MX(t). c. Use MX(t) to find the variance and the standard deviation of X.
The special case of the gamma distribution in which α is a positive integer n is...
The special case of the gamma distribution in which α is a positive integer n is called an Erlang distribution. If we replace β by 1 λ in the expression below, f(x; α, β) = 1 βαΓ(α) xα − 1e−x/β x ≥ 0 0 otherwise the Erlang pdf is as follows. f(x; λ, n) = λ(λx)n − 1e−λx (n − 1)! x ≥ 0 0 x < 0 It can be shown that if the times between successive events are...
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t...
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t and ?Y(?)=?3t^2+t . Determine the moment generating function of ? = ? + 2?. If possible, state the distribution name (and include parameter values) of the distribution of ?.