Question

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...

Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9643 meters, appears in the table as 643. Only the last two digits of the year were entered into the computer.

Year 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean 643 646 657 669 675 690 698 699 714 719 727 743 758

(a) Plot the data. Consider whether or not the trend in lean over time appears to be linear. (Do this on paper. Your instructor may ask you to turn in this graph.)

(b) What is the equation of the least-squares line? (Round your answers to three decimal places.)
y =  +  x

What percent of the variation in lean is explained by this line? (Round your answer to one decimal place.)
%

(c) Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of the lean. (Round your answers to two decimal places.)
(  ,  )

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of...
Engineers concerned about a tower's stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower over time provide much useful information. The following table gives measurements for the years 1975 to 1987. The variable "lean" represents the difference between where a point on the tower would be if the tower were straight and where it actually is. The data are coded as tenths of a millimeter in excess of 2.9 meters, so that the...