Question

Let X be an exponential random variable. Suppose E[X|X>a]=b, where b>a>0 are two constants. Compute the...

Let X be an exponential random variable. Suppose E[X|X>a]=b, where b>a>0 are two constants. Compute the probability P(X>a|X>a).

Homework Answers

Answer #1

Solution for probability P(X>b|X>a)

Let parameter of given exponential distribution is . From the given pdf we have

The conditional pdf is:

Now,

  

Since so

--------------------

So,

Putting   gives:


thank you for asking...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise....
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise. a. compute the exact probability that X takes on a value more than two standard deviations away from its mean. b. use chebychev's inequality to find a bound on this probability
a) Suppose that X is a uniform continuous random variable where 0 < x < 5....
a) Suppose that X is a uniform continuous random variable where 0 < x < 5. Find the pdf f(x) and use it to find P(2 < x < 3.5). b) Suppose that Y has an exponential distribution with mean 20. Find the pdf f(y) and use it to compute P(18 < Y < 23). c) Let X be a beta random variable a = 2 and b = 3. Find P(0.25 < X < 0.50)
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and b are constants. (a) Find the distribution of Y . (b) Find the mean and variance of Y . (c) Find a and b so that Y ∼ U(−1, 1). (d) Explain how to find a function (transformation), r(), so that W = r(X) has an exponential distribution with pdf f(w) = e^ −w, w > 0.
Let X be a random variable with an exponential distribution and suppose P(X > 1.5) =...
Let X be a random variable with an exponential distribution and suppose P(X > 1.5) = .0123 What is the value of λ? What are the expected value and variance? What is P(X < 1)?
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P(...
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P( X > 2/ λ ) and P(| X − 1 /λ | < 2/ λ) .
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric...
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric with parameter p. Further suppose that p is uniform between zero and one. Determine the pdf for the random variable X and compute E(X).
Let t be a random value of a variable with exponential density e −t , t...
Let t be a random value of a variable with exponential density e −t , t > 0, and let Y be Poisson with parameter t. Find P(Y = 2). A. 1/4 B. 1/2 C. 1/8 D. 1/e
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤ x < ∞ 0 otherwise } for some λ > 0. a. Compute the cumulative distribution function F(x), where F(x) = Prob(X < x) viewed as a function of x. b. The α-percentile of a random variable is the number mα such that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the random variable X. The value of mα will...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
Let X be a random variable with possible values {−2, 0, 2} and such that P(X...
Let X be a random variable with possible values {−2, 0, 2} and such that P(X = 0) = 0.2. Compute E(X^2 ).