Question

A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 =...

A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 = 2.6. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table)

a. Construct the 90% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.)

Confidence interval is ________ to _________

Homework Answers

Answer #1

Df = n - 1 = 20 -1 = 19

t critical value at 0.10 significance level with 19 df = 1.7291

90% confidence interval for D is

- t * Sd / sqrt(n) < D < + t * Sd / sqrt(n)

1.3 - 1.7291 * 2.6 / sqrt(20) < D < 1.3 + 1.7291 * 2.6 / sqrt(20)

0.29 < D < 2.31

Confidence interval is 0.29 to 2.31

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10-9. A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2...
10-9. A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 = 2.6. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table) a. Construct the 99% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) Confidence interval is______ to______. b. Using the confidence interval, test whether the mean difference differs from...
A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 =...
A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 = 2.6. Assume a normal distribution. Use Table 2. a. Construct a 90% confidence interval for the mean difference μD. (Round intermediate calculations to 4 decimal places and final answers to 2 decimal places.)   Confidence interval is  to . b. Using the confidence interval, test whether the mean difference differs from zero. The mean difference does not differ from zero. The mean difference differs from zero.
A sample of 20 paired observations generates the following data: d− = 1.3 and s2D =...
A sample of 20 paired observations generates the following data: d− = 1.3 and s2D = 2.6. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table) a. Construct the 90% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) b. Using the confidence interval, test whether the mean difference differs from zero. There is evidence that...
A sample of 38 paired observations generates the following data: d−d− = 0.5 and s2DsD2 =...
A sample of 38 paired observations generates the following data: d−d− = 0.5 and s2DsD2 = 5.0. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table) a. Construct the 99% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) b. Using the confidence interval, test whether the mean difference differs from zero. There is no evidence...
A sample of 19 paired observations generates the following data: d = 1.2 and s2DsD2 =...
A sample of 19 paired observations generates the following data: d = 1.2 and s2DsD2 = 2.4. Assume a normal distribution. a. Construct the 95% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) Confidence interval is_________to__________. b. Using the confidence interval, test whether the mean difference differs from zero. There is evidence that the mean difference differs from zero. There is no evidence that the...
A simple random sample of 11 observations is derived from a normally distributed population with a...
A simple random sample of 11 observations is derived from a normally distributed population with a known standard deviation of 2.2. [You may find it useful to reference the z table.] a. Is the condition that X−X− is normally distributed satisfied? Yes No b. Compute the margin of error with 95% confidence. (Round intermediate calculations to at least 4 decimal places. Round "z" value to 3 decimal places and final answer to 2 decimal places.) c. Compute the margin of...
Let the following sample of 8 observations be drawn from a normal population with unknown mean...
Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation: 28, 23, 18, 15, 16, 5, 21, 13. [You may find it useful to reference the t table.] a. Calculate the sample mean and the sample standard deviation. (Round intermediate calculations to at least 4 decimal places. Round "Sample mean" to 3 decimal places and "Sample standard deviation" to 2 decimal places.) b. Construct the 90% confidence interval for the population...
A random sample of 14 observations is used to estimate the population mean. The sample mean...
A random sample of 14 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 158.4 and 30.10, respectively. Assume that the population is normally distributed. [You may find it useful to reference the t table.] a. Construct the 90% confidence interval for the population mean. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Construct...
Let the following sample of 8 observations be drawn from a normal population with unknown mean...
Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation: 23, 26, 22, 20, 16, 21, 25, 24. [You may find it useful to reference the t table.] a. Calculate the sample mean and the sample standard deviation. (Round intermediate calculations to at least 4 decimal places. Round "Sample mean" to 3 decimal places and "Sample standard deviation" to 2 decimal places.) b. Construct the 90% confidence interval for the population...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x 1= 27.1 x2 = 30.3 σ12 = 89.5 σ22 = 92.3 n1 = 25 n2 = 31 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT