Question

Given below is a bivariate distribution for the random variables x and y. f(x, y) x...

Given below is a bivariate distribution for the random variables x and y. f(x, y) x y 0.5 50 80 0.2 30 50 0.3 40 60 (a) Compute the expected value and the variance for x and y. E(x) = E(y) = Var(x) = Var(y) = (b) Develop a probability distribution for x + y. x + y f(x + y) 130 80 100 (c) Using the result of part (b), compute E(x + y) and Var(x + y). E(x + y) = Var(x + y) = (d) Compute the covariance and correlation for x and y. (Round your answer for correlation to two decimal places.) covariance correlation Are x and y positively related, negatively related, or unrelated?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given below is a bivariate distribution for the random variables x and y f(x,y) x y...
Given below is a bivariate distribution for the random variables x and y f(x,y) x y 0.3 80 70 0.4 30 50 0.3 50 60 a. Compute the expected value and the variance for x and y E(x)= E(y)= Var(x)= Var(y)= b. Develop a probability distribution for x+y x+y f(x+y) 150 80 110 c. Using the result of part (b), compute E(x+y) and Var(x+y) . E(x+y) Var(x+y) d. Compute the covariance and correlation for x and y. If required, round...
Given below is a bivariate distribution for the random variables x and y. f(x, y) x...
Given below is a bivariate distribution for the random variables x and y. f(x, y) x y 0.1 90 90 0.5 30 40 0.4 50 70 a. Compute the expected value and the variance for x and y. E(x) = E(y) = Var(x) = Var(y) = b. Develop a probability distribution for x + y. Round your answers to one decimal place. x + y f(x + y) 180 70 120 c. Using the result of part (b), compute E(x...
Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are...
Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are independent and Cov(X,Y) = 0. Show that Y|X ~ Normal(E[Y|X], V[Y|X]). What are E[Y|X] and V[Y|X]?
Consider the following bivariate distribution p(x, y) of two discrete random variables X and Y. Y\X...
Consider the following bivariate distribution p(x, y) of two discrete random variables X and Y. Y\X -2 -1 0 1 2 0 0.01 0.02 0.03 0.10 0.10 1 0.05 0.10 0.05 0.07 0.20 2 0.10 0.05 0.03 0.05 0.04 a) Compute the marginal distributions p(x) and p(y) b) The conditional distributions P(X = x | Y = 1) c) Are these random variables independent? d) Find E[XY] e) Find Cov(X, Y) and Corr(X, Y)
Problems 9 and 10 refer to the discrete random variables X and Y whose joint distribution...
Problems 9 and 10 refer to the discrete random variables X and Y whose joint distribution is given in the following table. Y=-1 Y=0 Y=1 X=1 1/4 1/8 0    X=2 1/16 1/16 1/8 X=3 1/16 1/16 1/4 P9: Compute the marginal distributions of X and Y, and use these to compute E(X), E(Y), Var(X), and Var(Y). P10: Compute Cov(X, Y) and the correlation ρ for the random variables X and Y. Are X and Y independent?
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero...
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero elsewhere a)Are X and Y discrete or continuous random variables? b)Construct and joint probability distribution table by writing these probabilities in a rectangular array, recording each marginal pmf in the "margins" c)Determine if X and Y are Independent variables d)Find P(X>Y) e)Compute E(X), E(Y), E(X^2) and E(XY) f)Compute var(X) g) Compute cov(X,Y)
The independent random variables X and Y are defined by the following probability distribution tables: X...
The independent random variables X and Y are defined by the following probability distribution tables: X 1 3 6 f(x) 0.6 0.3 0.1 Y 2 3 5 7 f(y) 0.1 0.2 0.3 0.4Determine the standard deviation of 3Y + 5
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X...
Consider joint Probability distribution of two random variables X and Y given as following f(x,y)   X        2   4   6 Y   1   0.1   0.15   0.06    3   0.17   0.1   0.18    5   0.04   0.07   0.13 (a)   Find expected value of g(X,Y) = XY2 (b)   Find Covariance of Cov(x,y)
Two genes’ expression values follow a bivariate normal distribution. Let X and Y denote their expression...
Two genes’ expression values follow a bivariate normal distribution. Let X and Y denote their expression values respectively. Also assume that X has mean 9 and variance 3; Y has mean 10 and variance 5; and the covariance between X and Y is 2. In a trial, 50 independent measurements of the expression values of the two genes are collected, and denoted as 11 ( , ) XY, …, 50 50 ( , ) XY. We wish to find the...
Two genes’ expression values follow a bivariate normal distribution. Let X and Y denote their expression...
Two genes’ expression values follow a bivariate normal distribution. Let X and Y denote their expression values respectively. Also assume that X has mean 9 and variance 3; Y has mean 10 and variance 5; and the covariance between X and Y is 2. In a trial, 50 independent measurements of the expression values of the two genes are collected, and denoted as 1 1 ( , ) X Y , …, 50 50 ( , ) X Y ....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT