The accompanying table gives results from a study of words spoken in a day by men and women. Assume that both samples are independent simple random samples from populations having normal distributions. Use a
0.050.05
significance level to test the claim that the numbers of words spoken in a day by men vary more than the numbers of words spoken in a day by women.
n |
x overbarx |
s |
||
---|---|---|---|---|
Men |
185185 |
15 comma 668.715,668.7 |
8 comma 632.88,632.8 |
|
Women |
211211 |
16 comma 215.716,215.7 |
7 comma 301.77,301.7 |
What are the null and alternative hypotheses?
A.
Upper H 0H0:
sigma Subscript 1 Superscript 2σ21not equals≠sigma Subscript 2 Superscript 2σ22
Upper H 1H1:
sigma Subscript 1 Superscript 2σ21equals=sigma Subscript 2 Superscript 2σ22
B.
Upper H 0H0:
sigma Subscript 1 Superscript 2σ21equals=sigma Subscript 2 Superscript 2σ22
Upper H 1H1:
sigma Subscript 1 Superscript 2σ21greater than>sigma Subscript 2 Superscript 2σ22
C.
Upper H 0H0:
sigma Subscript 1 Superscript 2σ21equals=sigma Subscript 2 Superscript 2σ22
Upper H 1H1:
sigma Subscript 1 Superscript 2σ21less than<sigma Subscript 2 Superscript 2σ22
D.
Upper H 0H0:
sigma Subscript 1 Superscript 2σ21equals=sigma Subscript 2 Superscript 2σ22
Upper H 1H1:
sigma Subscript 1 Superscript 2σ21not equals≠sigma Subscript 2 Superscript 2σ22
Identify the test statistic.
Fequals=. 97.97
(Round to two decimal places as needed.)
Use technology to identify the P-value.
The P-value is
nothing.
(Round to three decimal places as needed.)
Null and alternative hypothesis:
Hₒ : σ₁ = σ₂
H₁ : σ₁ > σ₂
Answer B)
Test statistic:
F = s₁² / s₂² = 8632.8² / 7301.7² =
1.40
Degree of freedom:
df₁ = n₁-1 = 184
df₂ = n₂-1 = 210
P-value :
P-value = F.DIST.RT(1.3978, 184, 210) =
0.009
Conclusion:
As p-value < α, we reject the null hypothesis
THANKS
revert back for doubt
please upvote
.
Get Answers For Free
Most questions answered within 1 hours.