A recent report in Pasadena Times indicated a typical family of four spends $490 per month on food. Assume the distribution of food expenditures for a family follows the normal distribution, with a standard deviation of $90 per month.
Solution :
Given that ,
mean = = 490
standard deviation = = 90
P(300 < x < 490) = P[(300 - 490)/ 90) < (x - ) / < (490 - 490) /90 ) ]
= P(-2.11 < z < 0)
= P(z < 0 ) - P(z < -2.11 )
Using z table,
= 0.5 - 0.0174
= 0.4826
= 48.26%
P(x < 430 ) = P[(x - ) / < ( 430 - 490) / 90 ]
= P(z < -0.67)
Using z table,
= 0.2514
probability = 0.2514
P(430 < x < 600) = P[(430 - 490)/ 90 ) < (x - ) / < (600 - 490) / 90) ]
= P(-0.67 < z < 1.22)
= P(z < 1.22) - P(z < -0.67 )
Using z table,
= 0.8888 - 0.2514
= 0.6374
= 63.74%
P( 400 < x < 600) = P[(400 - 490)/ 90 ) < (x - ) / < ( 600 - 490) / 90) ]
= P( -1 < z < 1.22)
= P(z < 1.22 ) - P(z < -1 )
Using z table,
= 0.8888 - 0.1587
= 0.7301
probability = 0.7301
Get Answers For Free
Most questions answered within 1 hours.