Question

(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r...

(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r are logically equivalent using either a truth table or laws of logic.

(2) Let A, B and C be sets. If a is the proposition “x ∈ A”, b is the proposition “x ∈ B” and
c is the proposition “x ∈ C”, write down a proposition involving a, b and c that is logically equivalentto“x∈A∪(B−C)”.

(3) Consider the statement ∀x∃y¬P(x,y). Write down a negation of the statement that does not use the symbol ¬.

(4) Under the interpretation where x and y are in R − {0} and P (x, y) is “xy ≥ 0”, is the original statement in (3) true or is its negation true?

(5) Is the statement ( ∃x(P (x) ∨ Q(x)) ) → ( (∃xP (x)) ∨ (∃xQ(x)) ) valid? If it is, explain why. If it isn’t, give an interpretation under which it is false.

Homework Answers

Answer #1

where in ( AUB) if their is a single T either in A or B truth table is T.

(AB) if their is single F in either A or B truth table is F

for ~ A negation A T becomes F and F becomes T

in () for only TF combination becomes F remaining all are T.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. a. In what order are the operations in the following propositions performed? i. P ∨  ...
2. a. In what order are the operations in the following propositions performed? i. P ∨   ¬q ∨   r ∧   ¬p ii. P ∧   ¬q ∧   r ∧   ¬p iii. p ↔ q ∧   r → s b. Suppose that x is a proposition generated by p, q, and r that is equivalent to p ∨   ¬q. Write out x as a function of p, q, and r, and then give the truth table for x
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found...
Are the statement forms P∨((Q∧R)∨ S) and ¬((¬ P)∧(¬(Q∧ R)∧ (¬ S))) logically equivalent? I found that they were not logically equivalent but wanted to check. Also, does the negation outside the parenthesis on the second statement form cancel out with the negation in front of P and in front of (Q∧ R)∧ (¬ S)) ?
1) Show that ¬p → (q → r) and q → (p ∨ r) are logically...
1) Show that ¬p → (q → r) and q → (p ∨ r) are logically equivalent. No truth table and please state what law you're using. Also, please write neat and clear. Thanks 2) .Show that (p ∨ q) ∧ (¬p ∨ r) → (q ∨ r) is a tautology. No truth table and please state what law you're using. Also, please write neat and clear.
10. Comparing Statements - Practice 2 Complete the truth table for the given propositions. Indicate each...
10. Comparing Statements - Practice 2 Complete the truth table for the given propositions. Indicate each proposition's main operator by typing a lowercase x in box beneath the column in which it appears. On the right side of the truth table, indicate whether each row lists identical or opposite truth values for the two statements. Also indicate which, if any, rows show that the statements are consistent with a lowercase x. Finally, answer the questions beneath the truth table about...
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2....
1. Construct a truth table for: (¬p ∨ (p → ¬q)) → (¬p ∨ ¬q) 2. Give a proof using logical equivalences that (p → q) ∨ (q → r) and (p → r) are not logically equivalent. 3.Show using a truth table that (p → q) and (¬q → ¬p) are logically equivalent. 4. Use the rules of inference to prove that the premise p ∧ (p → ¬q) implies the conclusion ¬q. Number each step and give the...
For each of the following propositions construct a truth table and indicate whether it is a...
For each of the following propositions construct a truth table and indicate whether it is a tautology (i.e., it’s always true), a contradiction (it’s never true), or a contingency (its truth depends on the truth of the variables). Also specify whether it is a logical equivalence or not. Note: There should be a column for every operator. There should be three columns to show work for a biconditional. c) (P V Q) Λ ( ¬(? Λ Q) Λ (¬?)) d)...
1) a.draw the truth table for s: (p and r) or (q and not r) b....
1) a.draw the truth table for s: (p and r) or (q and not r) b. assuming s and q are true but p is false, deduce the value of r. explain c. draw the truth table for s: r ---> not (p and q) d. assuming q is true, deduce the values of s, p, and r. Explain
Let A and B be true, X, Y, and Z false. P and Q have unknown...
Let A and B be true, X, Y, and Z false. P and Q have unknown truth value. Please, determine the truth value of the propositions in problem 1. Please, show the process of calculation by using the letter ‘T’ for ‘true,’ ‘F’ for ‘false,’ and ‘?’ for ‘unknown value’ under each letter and operator. Please underline your answer (truth value under the main operator) and make it into Bold font 1.  [ ( Z ⊃ P ) ⊃ P ]...
Consider the following (true) statement: “All birds have wings but some birds cannot fly.” Part 1...
Consider the following (true) statement: “All birds have wings but some birds cannot fly.” Part 1 Write this statement symbolically as a conjunction of two sub-statements, one of which is a conditional and the other is the negation of a conditional. Use three components (p, q, and r) and explicitly state what these components correspond to in the original statement. Hint: Any statement in the form "some X cannot Y" can be rewritten equivalently as “not all X can Y,”...
DISCRETE MATHS [ BOOLEANS AND LOGIC] Please answer all Exercise 1.7.1: Determining whether a quantified statement...
DISCRETE MATHS [ BOOLEANS AND LOGIC] Please answer all Exercise 1.7.1: Determining whether a quantified statement about the integers is true. infoAbout Predicates P and Q are defined below. The domain of discourse is the set of all positive integers. P(x): x is prime Q(x): x is a perfect square (i.e., x = y2, for some integer y) Indicate whether each logical expression is a proposition. If the expression is a proposition, then give its truth value. (c) ∀x Q(x)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT