The data (below) represent a random sample of 9 scores (out of
100) on a midterm exam.
70 90 70 50 40 80 30 100 90
a. Find the sample mean and sample standard deviation.
b. Find the standard error of x bar
c. Assuming that the population distribution of scores is normal,
find a 95% confidence interval
for the true mean score.
d. Interpret your result in (c).
e. One claims that the true mean score is 90. Do you reject this
claim? Explain.
Part a)
Mean X̅ = Σ Xi / n
X̅ = 620 / 9 = 68.8889
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )
SX = √ ( 4688.8885 / 9 -1 ) = 24.2097
Part b)
Standard Error = S/√(n) = 8.0699
part c)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 9- 1 ) = 2.306
68.8889 ± t(0.05/2, 9 -1) * 24.2097/√(9)
Lower Limit = 68.8889 - t(0.05/2, 9 -1) 24.2097/√(9)
Lower Limit = 50.2797
Upper Limit = 68.8889 + t(0.05/2, 9 -1) 24.2097/√(9)
Upper Limit = 87.4981
95% Confidence interval is ( 50.2797 , 87.4981
)
Part d)
To Test :-
H0 :- µ = 90
H1 :- µ ≠ 90
Test Statistic :-
t = ( X̅ - µ ) / ( S / √(n))
t = ( 68.8889 - 90 ) / ( 24.2097 / √(9) )
t = -2.616
Test Criteria :-
Reject null hypothesis if | t | > t(α/2, n-1)
Critical value t(α/2, n-1) = t(0.05 /2, 9-1) = 2.306
| t | > t(α/2, n-1) = 2.616 > 2.306
Result :- Reject null hypothesis
Yes, we reject the claim.
Get Answers For Free
Most questions answered within 1 hours.