Question

Suppose that X has a probability density function given by (3/8)*x^2 for 0<=x<=2 (Show all work...

Suppose that X has a probability density function given by

(3/8)*x^2 for 0<=x<=2 (Show all work for this problem).

(A) Find the expected value, E(X), of X.

(B) Find the cumulative distribution function, F(X).

Homework Answers

Answer #1

TOPIC:Expectation and cdf of the given random variable.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0...
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0 < x < 2; 0, otherwise. a) What is the value of c? b) What is the cumulative distribution function of X? c) Find P(X<1|(1/2)<X<(3/2)).
Suppose we have the following probability mass function. X 0 2 4 6 8 F(x) 0.1...
Suppose we have the following probability mass function. X 0 2 4 6 8 F(x) 0.1 0.3 0.2 0.3 0.1 a) Determine the cumulative distribution function, F(x). b) Determine the expected value (mean), E(X) = μ. c) Determine the variance, V(X) = σ^2
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function 2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function. 3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function. 4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞). a. Show that f(x) is a probability density function b. . Find P(0 ≤...
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
A random variable X has its probability function given by x 0 1 2 3 4...
A random variable X has its probability function given by x 0 1 2 3 4 f(x) 0.3c 0.1c c 0.2c 0.4c a) Find c and F(x), the cumulative distribution function for X (for all real values of X). b) Find the probabilities of the event X = 6 and the event X >= 4. c) Find P(1 < X <= 4) and P(1 < X <= 4 | X <= 3).