We have
p = probability that registered car fail the test = 0.08
a) let X : number of registered car will fail
n = sample size = 10
We asked P( X = 4)
Using binomial probability
P( X = 4) = n!/X! * (n - X)! * pX *( 1- p) n -x
P( X = 4)= 10! /4!*6! *(0.08)4*(0.92)6
P( X = 4) = 0.0052
b) expected number of cars fail the test
E( X ) = n * p = 10 *0.08
E( X ) = 0.8
c) P( X > 8 ) = P( X = 9 ) + P( X = 10)
P( X = 9) = 10!/9!*1! * (0.08)9* (0.92)1 = 0.0000
P( X = 10) = 10!/10!*0! *(0.08)10*(0.92)0 = 0.0000
P( X > 8 ) = 0.0000 + 0.0000
P( X > 8) = 0.0000
Get Answers For Free
Most questions answered within 1 hours.