Question

Good day. I am struggling with a stats problem, it is NOT my strength. How do...

Good day. I am struggling with a stats problem, it is NOT my strength. How do you change the slope in a regression analysis to evaluate a change in a particular variable and its impact to the other?

Thanks in advance for you help!

Ela

Yes, this is the question in it's entirety. "As a baseline, construct a time series forecast. Then for each condition, manipulate the variable (s) that would be affected. For example, to address economic growth, you might change the slope value in the regression analysis. You might run a correlation between price and demand or temperature and demand to see whether the relationship is statistically significant. If so, you might consider a catastrophic event such as a drastic change in weather patterns."

I've constructed the baseline, deseasonalized it, and the conditions in the data are average temp, price per unit, demand, and quarterly sales for 10 years. I've extended my forecast for sales an additional three years.

Yt Baseline Yt/CMA Yt/St
t Yr Q Quarterly Sales Demand (000) Price/Unit Avg Temp MA(4) CMA(4) St, It St deseasonalize Tt Forecast
1 1 1 12645.60 26.4 479.00 47.3 1.035 12217.97 11871.304 12286.8
2 2 10298.50 21.5 479.00 69.1 0.972 10595.16 11956.999 11622.2
3 3 9723.70 20.3 479.00 85.4 11400.20 11388.23 0.85 0.943 10311.45 12042.694 11356.26
4 4 12933.00 27.0 479.00 51.3 11376.25 11519.26 1.12 1.044 12387.93 12128.388 12662.04
5 2 1 12549.80 26.2 479.00 47.9 11662.28 11761.00 1.07 1.035 12125.41 12214.083 12641.58
6 2 11442.60 23.4 489.00 69.3 11859.73 11972.94 0.96 0.972 11772.22 12299.778 11955.38
7 3 10513.50 21.5 489.00 85.6 12086.15 12320.61 0.85 0.943 11148.99 12385.473 11679.5
8 4 13838.70 28.3 489.00 50.1 12555.08 12758.98 1.08 1.044 13255.46 12471.167 13019.9
9 3 1 14425.50 29.5 489.00 46.9 12962.88 13295.39 1.09 1.035 13937.68 12556.862 12996.35
10 2 13073.80 26.2 499.00 69.9 13627.90 13775.55 0.95 0.972 13450.41 12642.557 12288.57
11 3 13173.60 26.4 499.00 88.0 13923.20 14003.74 0.94 0.943 13969.88 12728.252 12002.74
12 4 15019.90 30.1 499.00 51.4 14084.28 14235.43 1.06 1.044 14386.88 12813.946 13377.76
13 4 1 15069.80 30.2 499.00 47.2 14386.58 14465.74 1.04 1.035 14560.19 12899.641 13351.13
14 2 14283.00 27.0 529.00 69.1 14544.90 14671.00 0.97 0.972 14694.44 12985.336 12621.75
15 3 13806.90 26.1 529.00 85.4 14797.10 14864.06 0.93 0.943 14641.46 13071.031 12325.98
16 4 16028.70 30.3 529.00 51.3 14931.03 14916.74 1.07 1.044 15353.16 13156.725 13735.62
17 5 1 15605.50 29.5 529.00 47.5 14902.45 14928.21 1.05 1.035 15077.78 13242.420 13705.9
18 2 14168.70 27.3 519.00 69.1 14953.98 14894.46 0.95 0.972 14576.85 13328.115 12954.93
19 3 14013.00 27.0 519.00 85.4 14834.95 14629.96 0.96 0.943 14860.02 13413.809 12649.22
20 4 15552.60 29.4 529.00 51.3 14424.98 14101.88 1.10 1.044 14897.13 13499.504 14093.48
21 6 1 13965.60 26.4 529.00 48.0 13778.78 13420.24 1.04 1.035 13493.33 13585.199 14060.68
22 2 11583.90 21.1 549.00 69.1 13061.70 12833.25 0.90 0.972 11917.59 13670.894 13288.11
23 3 11144.70 20.3 549.00 85.4 12604.80 12530.00 0.89 0.943 11818.35 13756.588 12972.46
24 4 13725.00 25.0 549.00 52.0 12455.20 12408.61 1.11 1.044 13146.55 13842.283 14451.34
25 7 1 13367.20 24.8 539.00 47.3 12362.03 12245.15 1.09 1.035 12915.17 13927.978 14415.46
26 2 11211.20 20.8 539.00 69.1 12128.28 11801.28 0.95 0.972 11534.16 14013.673 13621.29
27 3 10209.70 19.3 529.00 85.4 11474.28 11165.55 0.91 0.943 10826.83 14099.367 13295.7
28 4 11109.00 21.0 529.00 51.7 10856.83 10810.99 1.03 1.044 10640.8 14185.062 14809.2
29 8 1 10897.40 20.6 529.00 47.3 10765.15 11201.64 0.97 1.035 10528.89 14270.757 14770.23
30 2 10844.50 20.5 529.00 69.1 11638.13 11644.31 0.93 0.972 11156.89 14356.452 13954.47
31 3 13701.60 26.4 519.00 85.4 11650.50 11630.66 1.18 0.943 14529.8 14442.146 13618.94
32 4 11158.50 21.5 519.00 51.6 11610.83 12040.64 0.93 1.044 10688.22 14527.841 15167.07
33 9 1 10738.70 20.3 529.00 47.3 12470.45 12490.23 0.86 1.035 10375.56 14613.536 15125.01
34 2 14283.00 27.0 529.00 69.1 12510.00 12893.89 1.11 0.972 14694.44 14699.231 14287.65
35 3 13859.80 26.2 529.00 85.4 13277.78 14313.78 0.97 0.943 14697.56 14784.925 13942.18
36 4 14229.60 26.4 539.00 52.4 15349.78 15929.26 0.89 1.044 13629.89 14870.620 15524.93
37 10 1 19026.70 35.3 539.00 47.9 16508.75 17120.93 1.11 1.035 18383.29 14956.315 15479.79
38 2 18918.90 35.1 539.00 68.1 17733.10 18452.35 1.03 0.972 19463.89 15042.010 14620.83
39 3 18757.20 34.8 539.00 87.2 19171.60 0.943 19890.99 15127.704 14265.43
40 4 19983.60 36.4 549.00 52.5 1.044 19141.38 15213.399 15882.79
41 11 1 1.035 15299.094 15834.56
42 2 0.972 15384.789 14954.01
43 3 0.943 15470.483 14588.67
44 4 1.044 15556.178 16240.65
45 12 1 1.035 15641.873 16189.34
46 2 0.972 15727.567 15287.2
47 3 0.943 15813.262 14911.91
48 4 1.044 15898.957 16598.51
49 13 1 1.035 15984.652 16544.11
50 2 0.972 16070.346 15620.38
51 3 0.943 16156.041 15235.15
52 4 1.044 16241.736 16956.37

Homework Answers

Answer #1

Time series is the series of data belonging to a variable with respect to time

It is useful for under standing the behavior of the data with respect to time

Trend line is useful for predicting the value of a dependent variable at a particular time period

to construct the trend line we have to calculate the slope and intercept of the line

slope is also called incremental value in the dependent variable and regression coefficient in case of regression line

slope is the ratio of successive difference in the trend values to the successive difference in the time period

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions