Good day. I am struggling with a stats problem, it is NOT my strength. How do you change the slope in a regression analysis to evaluate a change in a particular variable and its impact to the other?
Thanks in advance for you help!
Ela
Yes, this is the question in it's entirety. "As a baseline, construct a time series forecast. Then for each condition, manipulate the variable (s) that would be affected. For example, to address economic growth, you might change the slope value in the regression analysis. You might run a correlation between price and demand or temperature and demand to see whether the relationship is statistically significant. If so, you might consider a catastrophic event such as a drastic change in weather patterns."
I've constructed the baseline, deseasonalized it, and the conditions in the data are average temp, price per unit, demand, and quarterly sales for 10 years. I've extended my forecast for sales an additional three years.
Yt | Baseline | Yt/CMA | Yt/St | ||||||||||
t | Yr | Q | Quarterly Sales | Demand (000) | Price/Unit | Avg Temp | MA(4) | CMA(4) | St, It | St | deseasonalize | Tt | Forecast |
1 | 1 | 1 | 12645.60 | 26.4 | 479.00 | 47.3 | 1.035 | 12217.97 | 11871.304 | 12286.8 | |||
2 | 2 | 10298.50 | 21.5 | 479.00 | 69.1 | 0.972 | 10595.16 | 11956.999 | 11622.2 | ||||
3 | 3 | 9723.70 | 20.3 | 479.00 | 85.4 | 11400.20 | 11388.23 | 0.85 | 0.943 | 10311.45 | 12042.694 | 11356.26 | |
4 | 4 | 12933.00 | 27.0 | 479.00 | 51.3 | 11376.25 | 11519.26 | 1.12 | 1.044 | 12387.93 | 12128.388 | 12662.04 | |
5 | 2 | 1 | 12549.80 | 26.2 | 479.00 | 47.9 | 11662.28 | 11761.00 | 1.07 | 1.035 | 12125.41 | 12214.083 | 12641.58 |
6 | 2 | 11442.60 | 23.4 | 489.00 | 69.3 | 11859.73 | 11972.94 | 0.96 | 0.972 | 11772.22 | 12299.778 | 11955.38 | |
7 | 3 | 10513.50 | 21.5 | 489.00 | 85.6 | 12086.15 | 12320.61 | 0.85 | 0.943 | 11148.99 | 12385.473 | 11679.5 | |
8 | 4 | 13838.70 | 28.3 | 489.00 | 50.1 | 12555.08 | 12758.98 | 1.08 | 1.044 | 13255.46 | 12471.167 | 13019.9 | |
9 | 3 | 1 | 14425.50 | 29.5 | 489.00 | 46.9 | 12962.88 | 13295.39 | 1.09 | 1.035 | 13937.68 | 12556.862 | 12996.35 |
10 | 2 | 13073.80 | 26.2 | 499.00 | 69.9 | 13627.90 | 13775.55 | 0.95 | 0.972 | 13450.41 | 12642.557 | 12288.57 | |
11 | 3 | 13173.60 | 26.4 | 499.00 | 88.0 | 13923.20 | 14003.74 | 0.94 | 0.943 | 13969.88 | 12728.252 | 12002.74 | |
12 | 4 | 15019.90 | 30.1 | 499.00 | 51.4 | 14084.28 | 14235.43 | 1.06 | 1.044 | 14386.88 | 12813.946 | 13377.76 | |
13 | 4 | 1 | 15069.80 | 30.2 | 499.00 | 47.2 | 14386.58 | 14465.74 | 1.04 | 1.035 | 14560.19 | 12899.641 | 13351.13 |
14 | 2 | 14283.00 | 27.0 | 529.00 | 69.1 | 14544.90 | 14671.00 | 0.97 | 0.972 | 14694.44 | 12985.336 | 12621.75 | |
15 | 3 | 13806.90 | 26.1 | 529.00 | 85.4 | 14797.10 | 14864.06 | 0.93 | 0.943 | 14641.46 | 13071.031 | 12325.98 | |
16 | 4 | 16028.70 | 30.3 | 529.00 | 51.3 | 14931.03 | 14916.74 | 1.07 | 1.044 | 15353.16 | 13156.725 | 13735.62 | |
17 | 5 | 1 | 15605.50 | 29.5 | 529.00 | 47.5 | 14902.45 | 14928.21 | 1.05 | 1.035 | 15077.78 | 13242.420 | 13705.9 |
18 | 2 | 14168.70 | 27.3 | 519.00 | 69.1 | 14953.98 | 14894.46 | 0.95 | 0.972 | 14576.85 | 13328.115 | 12954.93 | |
19 | 3 | 14013.00 | 27.0 | 519.00 | 85.4 | 14834.95 | 14629.96 | 0.96 | 0.943 | 14860.02 | 13413.809 | 12649.22 | |
20 | 4 | 15552.60 | 29.4 | 529.00 | 51.3 | 14424.98 | 14101.88 | 1.10 | 1.044 | 14897.13 | 13499.504 | 14093.48 | |
21 | 6 | 1 | 13965.60 | 26.4 | 529.00 | 48.0 | 13778.78 | 13420.24 | 1.04 | 1.035 | 13493.33 | 13585.199 | 14060.68 |
22 | 2 | 11583.90 | 21.1 | 549.00 | 69.1 | 13061.70 | 12833.25 | 0.90 | 0.972 | 11917.59 | 13670.894 | 13288.11 | |
23 | 3 | 11144.70 | 20.3 | 549.00 | 85.4 | 12604.80 | 12530.00 | 0.89 | 0.943 | 11818.35 | 13756.588 | 12972.46 | |
24 | 4 | 13725.00 | 25.0 | 549.00 | 52.0 | 12455.20 | 12408.61 | 1.11 | 1.044 | 13146.55 | 13842.283 | 14451.34 | |
25 | 7 | 1 | 13367.20 | 24.8 | 539.00 | 47.3 | 12362.03 | 12245.15 | 1.09 | 1.035 | 12915.17 | 13927.978 | 14415.46 |
26 | 2 | 11211.20 | 20.8 | 539.00 | 69.1 | 12128.28 | 11801.28 | 0.95 | 0.972 | 11534.16 | 14013.673 | 13621.29 | |
27 | 3 | 10209.70 | 19.3 | 529.00 | 85.4 | 11474.28 | 11165.55 | 0.91 | 0.943 | 10826.83 | 14099.367 | 13295.7 | |
28 | 4 | 11109.00 | 21.0 | 529.00 | 51.7 | 10856.83 | 10810.99 | 1.03 | 1.044 | 10640.8 | 14185.062 | 14809.2 | |
29 | 8 | 1 | 10897.40 | 20.6 | 529.00 | 47.3 | 10765.15 | 11201.64 | 0.97 | 1.035 | 10528.89 | 14270.757 | 14770.23 |
30 | 2 | 10844.50 | 20.5 | 529.00 | 69.1 | 11638.13 | 11644.31 | 0.93 | 0.972 | 11156.89 | 14356.452 | 13954.47 | |
31 | 3 | 13701.60 | 26.4 | 519.00 | 85.4 | 11650.50 | 11630.66 | 1.18 | 0.943 | 14529.8 | 14442.146 | 13618.94 | |
32 | 4 | 11158.50 | 21.5 | 519.00 | 51.6 | 11610.83 | 12040.64 | 0.93 | 1.044 | 10688.22 | 14527.841 | 15167.07 | |
33 | 9 | 1 | 10738.70 | 20.3 | 529.00 | 47.3 | 12470.45 | 12490.23 | 0.86 | 1.035 | 10375.56 | 14613.536 | 15125.01 |
34 | 2 | 14283.00 | 27.0 | 529.00 | 69.1 | 12510.00 | 12893.89 | 1.11 | 0.972 | 14694.44 | 14699.231 | 14287.65 | |
35 | 3 | 13859.80 | 26.2 | 529.00 | 85.4 | 13277.78 | 14313.78 | 0.97 | 0.943 | 14697.56 | 14784.925 | 13942.18 | |
36 | 4 | 14229.60 | 26.4 | 539.00 | 52.4 | 15349.78 | 15929.26 | 0.89 | 1.044 | 13629.89 | 14870.620 | 15524.93 | |
37 | 10 | 1 | 19026.70 | 35.3 | 539.00 | 47.9 | 16508.75 | 17120.93 | 1.11 | 1.035 | 18383.29 | 14956.315 | 15479.79 |
38 | 2 | 18918.90 | 35.1 | 539.00 | 68.1 | 17733.10 | 18452.35 | 1.03 | 0.972 | 19463.89 | 15042.010 | 14620.83 | |
39 | 3 | 18757.20 | 34.8 | 539.00 | 87.2 | 19171.60 | 0.943 | 19890.99 | 15127.704 | 14265.43 | |||
40 | 4 | 19983.60 | 36.4 | 549.00 | 52.5 | 1.044 | 19141.38 | 15213.399 | 15882.79 | ||||
41 | 11 | 1 | 1.035 | 15299.094 | 15834.56 | ||||||||
42 | 2 | 0.972 | 15384.789 | 14954.01 | |||||||||
43 | 3 | 0.943 | 15470.483 | 14588.67 | |||||||||
44 | 4 | 1.044 | 15556.178 | 16240.65 | |||||||||
45 | 12 | 1 | 1.035 | 15641.873 | 16189.34 | ||||||||
46 | 2 | 0.972 | 15727.567 | 15287.2 | |||||||||
47 | 3 | 0.943 | 15813.262 | 14911.91 | |||||||||
48 | 4 | 1.044 | 15898.957 | 16598.51 | |||||||||
49 | 13 | 1 | 1.035 | 15984.652 | 16544.11 | ||||||||
50 | 2 | 0.972 | 16070.346 | 15620.38 | |||||||||
51 | 3 | 0.943 | 16156.041 | 15235.15 | |||||||||
52 | 4 | 1.044 | 16241.736 | 16956.37 |
Time series is the series of data belonging to a variable with respect to time
It is useful for under standing the behavior of the data with respect to time
Trend line is useful for predicting the value of a dependent variable at a particular time period
to construct the trend line we have to calculate the slope and intercept of the line
slope is also called incremental value in the dependent variable and regression coefficient in case of regression line
slope is the ratio of successive difference in the trend values to the successive difference in the time period
Get Answers For Free
Most questions answered within 1 hours.