Question

Assume the conditional normal simple linear regression model for the data (X_1,Y_1),...,(X_n,Y_n).    Y_i = B_0 +...

Assume the conditional normal simple linear regression model for the data (X_1,Y_1),...,(X_n,Y_n).   

Y_i = B_0 + B_1 * X + e_i

Construct a size alpha test for

H_0: B_1 = k * B_0 vs H_1: B_1 =/= k * B_0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1: In the normal error simple linear regression model, suppose all assumptions hold except constancy...
Question 1: In the normal error simple linear regression model, suppose all assumptions hold except constancy of error variance with respect to X. Suppose E(Y) = V(Y). What transformation of y works to stabilize the variance? Question 2: Let Y1,Y2,...Yn be a random sample for a normal distribution with mean 10 and variance 4. Let Y(k) denote the Kth order statistics of this random sample. Approximate the probability: P(Y(k) <= 8.5) , if K =15 and n = 50. Please...
The statistical model for simple linear regression is written as μy = β0 + β1*x, where...
The statistical model for simple linear regression is written as μy = β0 + β1*x, where μy represents the mean of a Normally distributed response variable and x represents the explanatory variable. The parameters β0 and β1 are estimated, giving the linear regression model defined by μy = 70 + 10*x , with standard deviation σ = 5. (multiple choice question) What is the distribution of the test statistic used to test the null hypothesis H0 : β1 = 0...
The data file Demographics was used in a simple linear regression model where Unemployment Rate is...
The data file Demographics was used in a simple linear regression model where Unemployment Rate is the response variable and Cost of Living is the explanatory variable. You may refer to the previous two questions for the regression model if you wish. The anova function in R was used to obtain the breakdown of the sums of squares for the regression model. This is shown below: > anova(myreg)Analysis of Variance Table Response: Unemployment Df Sum Sq Mean Sq F value...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
Suppose that a simple linear regression model is appropriate for describing the relationship between y =...
Suppose that a simple linear regression model is appropriate for describing the relationship between y = house price (in dollars) and x = house size (in square feet) for houses in a large city. The population regression line is y = 22,500 + 46x and σ = 5,000. (a) What is the average change in price associated with one extra sq. ft of space? $ What is the average change in price associated with an additional 100 sq. ft of...
You estimate a simple linear regression model using a sample of 25 observations and obtain the...
You estimate a simple linear regression model using a sample of 25 observations and obtain the following results (estimated standard errors in parentheses below coefficient estimates): y = 97.25 + 19.74 *x (3.86) (3.42) You want to test the following hypothesis: H0: beta2 = 1, H1: beta2 >12. If you choose to reject the null hypothesis based on these results, what is the probability you have committed a Type I error? a.)between .01 and .02 b.)between .02 and .05 c.)less...
1. General features of economic time series: trends, cycles, seasonality. 2. Simple linear regression model and...
1. General features of economic time series: trends, cycles, seasonality. 2. Simple linear regression model and multiple regression model: dependent variable, regressor, error term; fitted value, residuals; interpretation. 3. Population VS sample: a sample is a subset of a population. 4. Estimator VS estimate. 5. For what kind of models can we use OLS? 6. R-squared VS Adjusted R-squared. 7. Model selection criteria: R-squared/Adjusted R-squared; residual variance; AIC, BIC. 8. Hypothesis testing: p-value, confidence interval (CI), (null hypothesis , significance...
Applying Simple Linear Regression to Your favorite Data (Please confirm with the instructor the dataset you...
Applying Simple Linear Regression to Your favorite Data (Please confirm with the instructor the dataset you find before you work on this question) Many dependent variables in business serve as the subjects of regression modeling efforts. We list such variables here: Rate of return of a stock Annual unemployment rate Grade point average of an accounting student Gross domestic product of a country Choose one of these dependent variables, or choose some other dependent variable, for which you want to...
The following data have been collected for a simple linear regression analysis relating sales (y) to...
The following data have been collected for a simple linear regression analysis relating sales (y) to price (x): x y Price     ($) Sales (units) 4 120 7 60 5 100 8 80 In applying the least squares criterion, the slope (b) and the intercept (a) for the best-fitting line are b = -12 and a = 162. You are to conduct a hypothesis test to determine whether you can reject the null hypothesis that the population slope, β, is 0...
22. We fit a simple linear regression model using price (in dollars) to predict the number...
22. We fit a simple linear regression model using price (in dollars) to predict the number of packets of dog biscuits sold per day. The regression equation is y = 98.1 - 9.8x, and R2 = 0.5275. Explain how to interpret the R2 in the context of this problem.: * (A) 52.75% of the variation in the price is explained by the number of packets of dog biscuits sold per day. (B) 52.75% of the variation in the number of...