Agent | Price |
Marty | 206424 |
Rose | 346150 |
Carter | 372360 |
Peterson | 310622 |
Carter | 496100 |
Peterson | 294086 |
Carter | 228810 |
Isaacs | 384420 |
Peterson | 416120 |
Isaacs | 487494 |
Rose | 448800 |
Peterson | 388960 |
Marty | 335610 |
Rose | 276000 |
Rose | 346421 |
Isaacs | 453913 |
Carter | 376146 |
Peterson | 694430 |
Rose | 251269 |
Rose | 547596 |
Marty | 214910 |
Rose | 188799 |
Carter | 459950 |
Isaacs | 264160 |
Carter | 393557 |
Isaacs | 478675 |
Carter | 384020 |
Marty | 313200 |
Isaacs | 274482 |
Marty | 167962 |
Isaacs | 175823 |
Isaacs | 226498 |
Carter | 316827 |
Carter | 189984 |
Marty | 366350 |
Isaacs | 416160 |
Isaacs | 308000 |
Rose | 294357 |
Carter | 337144 |
Peterson | 299730 |
Rose | 445740 |
Rose | 410592 |
Peterson | 667732 |
Rose | 523584 |
Marty | 336000 |
Marty | 202598 |
Marty | 326695 |
Rose | 321320 |
Isaacs | 246820 |
Isaacs | 546084 |
Isaacs | 793084 |
Isaacs | 174528 |
Peterson | 392554 |
Peterson | 263160 |
Rose | 237120 |
Carter | 225750 |
Isaacs | 848420 |
Carter | 371956 |
Carter | 404538 |
Rose | 250090 |
Peterson | 369978 |
Peterson | 209292 |
Isaacs | 190032 |
Isaacs | 216720 |
Marty | 323417 |
Isaacs | 316210 |
Peterson | 226054 |
Marty | 183920 |
Rose | 248400 |
Isaacs | 466560 |
Rose | 667212 |
Peterson | 362710 |
Rose | 265440 |
Rose | 706596 |
Marty | 293700 |
Marty | 199448 |
Carter | 369533 |
Marty | 230121 |
Marty | 169000 |
Peterson | 190291 |
Rose | 393584 |
Marty | 363792 |
Carter | 360960 |
Carter | 310877 |
Peterson | 919480 |
Carter | 392904 |
Carter | 200928 |
Carter | 537900 |
Rose | 258120 |
Carter | 558342 |
Marty | 302720 |
Isaacs | 240115 |
Carter | 793656 |
Peterson | 218862 |
Peterson | 383081 |
Marty | 351520 |
Peterson | 841491 |
Marty | 336300 |
Isaacs | 312863 |
Carter | 275033 |
Peterson | 229990 |
Isaacs | 195257 |
Marty | 194238 |
Peterson | 348528 |
Peterson | 241920 |
We need to analyze the "fairness" of homes that were assigned to the agents.
Ho: u >= 357000
Ha: u < 357000
Mean of sample data = X = 357026.5
Standard Deviation = 160700.1
n = 105
Let's conduct a one-sample t-test:
t = (X - u) / (s/√n)
t = (357026.5 - 357000)/ (160700.1 / √105)
t = 0.0017
t-critical value at df = 105 - 1 = 104 and alpha = 0.05 is: 1.65
As t = 0.0017 < 1.65, we cannot reject the null hypothesis.
Hence, we conclude that the mean selling prices of the assigned homes were not significantly different than 357000. Hence, the homes were assigned in a fair manner.
Get Answers For Free
Most questions answered within 1 hours.