The average student loan debt for college graduates is $25,800.
Suppose that that distribution is normal and that the standard
deviation is $11,800. Let X = the student loan debt of a randomly
selected college graduate. Round all probabilities to 4 decimal
places and all dollar answers to the nearest dollar.
a. What is the distribution of X? X ~ N ( _ , _ )
b Find the probability that the college graduate has between
$31,750 and $50,200 in student loan debt.
c. The middle 30% of college graduates' loan debt lies between what
two numbers?
Low: $ _
High: $ _
Answer:-
(b) 0.2893
(c) Low: $23440
High: $32054
Get Answers For Free
Most questions answered within 1 hours.