Question

the amount of money that students spend on their cell phones per week in normally distributed...

the amount of money that students spend on their cell phones per week in normally distributed with a mean of 52.00 and standard deviation of 6.00. 1.2.1 What is the probability that a student studies for more that 60.00 per week? 1.2.2 find the probability that the mean amount of money on cell phones for three randomly selected students is less than 60.66 per week.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the amount spent on cell phone service for students per month is normally distributed and...
Suppose the amount spent on cell phone service for students per month is normally distributed and has a mean of $54 and a standard deviation of $9. Binomial or Normal? What is the probability that the monthly cell phone bill for a randomly selected Wake Tech student is more than $60? What is the probability that the monthly cell phone bill for a randomly selected Wake Tech student is less than $50? Most student’s bill will be in the middle...
Suppose that the amount of time INTI International University students spend in the library per week...
Suppose that the amount of time INTI International University students spend in the library per week is normally distributed. A sample of 6 students is selected at random, and the sample mean computed as 13.83 hours with the standard deviation of 2.86 hour. Test at 1% significance level whether the mean number of hours spend in the library per week is less than 15 hours.
The times per week a student uses a lab computer are normally​ distributed, with a mean...
The times per week a student uses a lab computer are normally​ distributed, with a mean of 6.2 hours and a standard deviation of 1.3 hours. A student is randomly selected. Find the following probabilities. ​(a) Find the probability that the student uses a lab computer less than 4 hours per week. ​(b) Find the probability that the student uses a lab computer between 6 and 8 hours per week. ​(c) Find the probability that the student uses a lab...
The times per week a student uses a lab computer are normally​ distributed, with a mean...
The times per week a student uses a lab computer are normally​ distributed, with a mean of 6.5 hours and a standard deviation of 1.5 hours. A student is randomly selected. Find the following probabilities. ​(a) Find the probability that the student uses a lab computer less than 5 hours per week. ​(b) Find the probability that the student uses a lab computer between 7 and 9 hours per week. ​(c) Find the probability that the student uses a lab...
The times per week a student uses a lab computer are normally​ distributed, with a mean...
The times per week a student uses a lab computer are normally​ distributed, with a mean of 6.3 hours and a standard deviation of 1.2 hours. A student is randomly selected. Find the following probabilities. ​(a) Find the probability that the student uses a lab computer less than 5 hours per week. ​(b) Find the probability that the student uses a lab computer between 6 and 8 hours per week. ​(c) Find the probability that the student uses a lab...
The times per week a student uses a lab computer are normally​ distributed, with a mean...
The times per week a student uses a lab computer are normally​ distributed, with a mean of 6.1 hours and a standard deviation of 1.3 hours. A student is randomly selected. Find the following probabilities. ​(a) Find the probability that the student uses a lab computer less than 4 hours per week. ​(b) Find the probability that the student uses a lab computer between 7 and 8 hours per week. ​(c) Find the probability that the student uses a lab...
Assume students spend an average of $20.00 on a meal at a restaurant in 2018. Assume...
Assume students spend an average of $20.00 on a meal at a restaurant in 2018. Assume the amount of money spent on a restaurant meal is normally distributed and that the standard deviation is $4. What is the probability a randomly selected student spent more than $22? What is the probability that a randomly selected student spent between $19 and $21? Between what two values will the middle 99% of the amounts of money spent fall?
4. The amount of time in hours that college students spend on facebook per week is...
4. The amount of time in hours that college students spend on facebook per week is normally distributed with a mean of 40. You decide to conduct your own test. In a random sample of 60 college students you find that the mean time per week spent on facebook is 37.8 hrs and the standard deviation is 12.2. Does this mean differ significantly from the national average? Test your hypothesis at the .05 significance level and state your conclusion.
Suppose that the amount of money spent per week on groceries is normally distributed with an...
Suppose that the amount of money spent per week on groceries is normally distributed with an unknown mean and standard deviation. A random sample of 20 grocery bills is taken and gives a sample mean of $79 and a sample standard deviation of $13. Use a calculator to find a 95% confidence interval estimate for the population mean using the Student's t-distribution. Round your answer to two decimal places
5) A study found that consumers spend an average of $24 per week in cash without...
5) A study found that consumers spend an average of $24 per week in cash without being aware of where it goes. Assume that the amount of cash spent without being aware of where it goes is normally distributed and that the standard deviation is $6. What is the probability that a randomly selected person will spend more than $28?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT