Question

Let X and Y be jointly continuous random variables with joint density function f(x, y) =...

Let X and Y be jointly continuous random variables with joint density function f(x, y) = c(y^2 − x^2 )e^(−2y) , −y ≤ x ≤ y, 0 < y < ∞.

(a) Find c so that f is a density function.

(b) Find the marginal densities of X and Y .

(c) Find the expected value of X

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density...
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density functions fX(x) and fY(y) respectively. Further, the support for both of these marginal density functions is the interval (0,1). Which of the following statements is always true? (Note there may be more than one)    E[X^2Y^3]=(∫0 TO 1 x^2 dx)(∫0 TO 1 y^3dy)    E[X^2Y^3]=∫0 TO 1∫0 TO 1x^2y^3 f(x,y) dy dx    E[Y^3]=∫0 TO 1 y^3 fX(x) dx   E[XY]=(∫0 TO 1 x fX(x)...
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
Suppose X and Y are continuous random variables with joint density function f(x,y) = x +...
Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x...
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
The joint probability density function of two random variables X and Y is f(x, y) =...
The joint probability density function of two random variables X and Y is f(x, y) = 4xy for 0 < x < 1, 0 < y < 1, and f(x, y) = 0 elsewhere. (i) Find the marginal densities of X and Y . (ii) Find the conditional density of X given Y = y. (iii) Are X and Y independent random variables? (iv) Find E[X], V (X) and covariance between X and Y .
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...
Let X and Y be two continuous random variables with joint probability density function ?(?, ?)...
Let X and Y be two continuous random variables with joint probability density function ?(?, ?) = { ? 2 + ?? 3 0 ≤ ? ≤ 1, 0 ≤ ? ≤ 2 0 ??ℎ?????? Find ?(? + ? ≥ 1). Sketch the surface in the ? − ? plane.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT