Consider two independent random samples with the following results:
n1=552 pˆ1=0.67
???n2=462 pˆ2=0.42
Use this data to find the 95% confidence interval for the true difference between the population proportions.
Step 1 of 3:
Find the point estimate that should be used in constructing the confidence interval
Step 2 of 3:
Find the margin of error. Round your answer to six decimal places.
Step 3 of 3:
Construct the 95%
confidence interval. Round your answers to three decimal places.
The statistical software output for this problem is:
Two sample proportion summary confidence interval:
p1 : proportion of successes for population 1
p2 : proportion of successes for population 2
p1 - p2 : Difference in proportions
95% confidence interval results:
Difference | Count1 | Total1 | Count2 | Total2 | Sample Diff. | Std. Err. | L. Limit | U. Limit |
---|---|---|---|---|---|---|---|---|
p1 - p2 | 369.84 | 552 | 194.04 | 462 | 0.25 | 0.030460076 | 0.19029935 | 0.30970065 |
Hence,
Step - 1: Point estimate = 0.25
Step - 2: Margin of error = (0.30970065 - 0.19029935)/2 = 0.059701
Step - 3: 95% confidence interval:
(0.190, 0.310)
Get Answers For Free
Most questions answered within 1 hours.