Question

If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find...

If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find the distribution of Z = min{X1, X2}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn....
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn. Identify the distribution of the minimum V = min{X1,X2,...,Xn}.
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find...
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find the conditional probability mass function P(X1 = k | X1 + X2 = n).
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find...
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find the distribution of Z = min{X1, X2}.
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a)....
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a). Find the cdf and density of Z = X/Y . b). Compute P(X < Y ). c). Find the cdf and density of W = min{X,Y }.
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z = max(X1, X2). (a) Show that Y ∼ expon(2λ) (b) Find E(Y ) and E(Z). (c) Find the conditional density fZ|Y (z|y). (d) FindP(Z>2Y).
X1 and X2 are iid exponential (2) random variables and Z=max(X1 , X2). What is E[Z]?...
X1 and X2 are iid exponential (2) random variables and Z=max(X1 , X2). What is E[Z]? (Hint: Find CDF and then PDF of Z) A. 3/2 B. 3 C. 1/2 D. 3/4