Question

Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are...

Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are independent and Cov(X,Y) = 0.

Show that Y|X ~ Normal(E[Y|X], V[Y|X]). What are E[Y|X] and V[Y|X]?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be continuous random variables with joint distribution function F(x, y), and let...
Let X and Y be continuous random variables with joint distribution function F(x, y), and let g(X, Y ) and h(X, Y ) be functions of X and Y . Prove the following: (a) E[cg(X, Y )] = cE[g(X, Y )]. (b) E[g(X, Y ) + h(X, Y )] = E[g(X, Y )] + E[h(X, Y )]. (c) V ar(a + X) = V ar(X). (d) V ar(aX) = a 2V ar(X). (e) V ar(aX + bY ) = a...
Consider the following bivariate distribution p(x, y) of two discrete random variables X and Y. Y\X...
Consider the following bivariate distribution p(x, y) of two discrete random variables X and Y. Y\X -2 -1 0 1 2 0 0.01 0.02 0.03 0.10 0.10 1 0.05 0.10 0.05 0.07 0.20 2 0.10 0.05 0.03 0.05 0.04 a) Compute the marginal distributions p(x) and p(y) b) The conditional distributions P(X = x | Y = 1) c) Are these random variables independent? d) Find E[XY] e) Find Cov(X, Y) and Corr(X, Y)
Uncorrelated and Gaussian does not imply independent unless jointly Gaussian. Let X ∼N(0,1) and Y =...
Uncorrelated and Gaussian does not imply independent unless jointly Gaussian. Let X ∼N(0,1) and Y = WX, where p(W = −1) = p(W = 1) = 0 .5. It is clear that X and Y are not independent, since Y is a function of X. a. Show Y ∼N(0,1). b. Show cov[X,Y ]=0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian. Hint: use the definition of covariance cov[X,Y]=E [XY] −E [X] E [Y ] and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and X and Y are independent random variables. Assume that you know both the mean and variance of   X and Y, if you have random samples from X and Y with equal sample size, what is the sampling distribution for the sample means of d(assuming X and Y are independent)?
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as...
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as follows: Select X = x as a uniform random variable on [0,1]. Then, select Y as a Gaussian random variable with mean x and variance 1. Compute E[Y ]. b) Let X,Y be jointly Gaussian, with mean E[X] = E[Y ] = 0, variances V ar[X] = 1,V ar[Y ] = 1 and covariance Cov[X,Y ] = 0.4. Compute E[(X + 2Y )2].
Let X and Y be two random variables which follow standard normal distribution. Let J =...
Let X and Y be two random variables which follow standard normal distribution. Let J = X − Y . Find the distribution function of J. Also find E[J] and Var[J].
The probability distribution of a couple of random variables (X, Y) is given by : X/Y...
The probability distribution of a couple of random variables (X, Y) is given by : X/Y 0 1 2 -1 a 2a a 0 0 a a 1 3a 0 a 1) Find "a" 2) Find the marginal distribution of X and Y 3) Are variables X and Y independent? 4) Calculate V(2X+3Y) and Cov(2X,5Y)
. Let X and Y be two discrete random variables. The range of X is {0,...
. Let X and Y be two discrete random variables. The range of X is {0, 1, 2}, while the range of Y is {1, 2, 3}. Their joint probability mass function P(X,Y) is given in the table below: X\Y        1             2              3 0              0              .25          0 1              .25          0             .25 2              0             .25          0 Compute E[X], V[X], E[Y], V[Y], and Cov(X, Y).
Let X and Y be random variables and c a constant. Let Z = X +...
Let X and Y be random variables and c a constant. Let Z = X + cY. You are given the following information: E(X) = 5, Var(X) = 10, E(Y) = 3, Var(Y) = 1, Var(Z) = 37, and Cov(X,Y)=3. Find c if E(Z)≥0.
Let X and Y be independent random variables each having the uniform distribution on [0, 1]....
Let X and Y be independent random variables each having the uniform distribution on [0, 1]. (1)Find the conditional densities of X and Y given that X > Y . (2)Find E(X|X>Y) and E(Y|X>Y) .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT