LET'S SAY THESE ARE THE NUMBER OF STRIKE-OUTS A PITCHER THROWS IN THE NUMBER OF INNINGS PITCHED (WE HAVE 6 PAIRS OF DATA POINTS SO n = 6)
THE INNINGS PITCHED ARE THE ''X'' VALUES (INDEPENDENT VARIABLE) AND THE STRIKE-OUTS ARE THE ''Y'' VALUES (DEPENDENT VARIABLE)
FOR EXAMPLE WHEN PITCHING 4 INNINGS, THE PITCHER STRUCK OUT 6 BATTERS (4,6) (ETC.)
DATA POINTS (X,Y) | X | Y | X - Mx | (X-Mx)^2 | Y - My | (X-Mx)*(Y-My) |
(4,6) | ||||||
(3,7) | ||||||
(5,12) | ||||||
(11,17) | ||||||
(10,10) | ||||||
(14,14) | ||||||
MEAN (Mx & My) | TOTAL | TOTAL | ||||
SD |
SO, USING THIS EQUATION, HOW MANY STRIKE-OUTS WOULD BE PREDICTED FOR THIS PITCHER IN X = 8 INNINGS?
X | Y | X-Mx | (X-Mx)^2 | Y - My | (Y - My)^2 | (X - Mx)(Y-My) | |
4 | 6 | -3.83333 | 14.69444 | -5 | 25 | 19.16667 | |
3 | 7 | -4.83333 | 23.36111 | -4 | 16 | 19.33333 | |
5 | 12 | -2.83333 | 8.027778 | 1 | 1 | -2.83333 | |
11 | 17 | 3.166667 | 10.02778 | 6 | 36 | 19 | |
10 | 10 | 2.166667 | 4.694444 | -1 | 1 | -2.16667 | |
14 | 14 | 6.166667 | 38.02778 | 3 | 9 | 18.5 | |
Total | 47 | 66 | 98.83333 | 88 | 71 | ||
Mean | 7.833333 | 11 | |||||
SD | 4.445972 | 4.195235 |
= 98.33
= 88
= 71
let the simple linear regression equation be y = b0 + b1x
b1 = Sxy/Sxx = 71/98.33 = 0.722
b0 = My - b1Mx = 11 - 0.722*7.83 = 5.35
Y = 5.35 + 0.722X
for X =8 Y = 5.35 + 0.722*8 = 11.12
Y = 11.
Get Answers For Free
Most questions answered within 1 hours.