A highway employee performed a regression analysis of the relationship between the number of construction work-zone fatalities and the number of unemployed people in a city. The regression equation is shown as: Fatalities = 12.327 + 0.00010380 (Unemp). Use t-distribution for the t-values. Some additional output is as follows:
Predictor | Coef | SE Coef | T | P | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Constant | 12.327 | 8.070 | 1.53 | 0.147 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unemp | 0.00010380 | 0.00002864 | 3.62 | 0.002 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
a. How many states were in the sample?
= 16+1 = 17
b. Determine standard error of estimate.
= sqrt(MSE) = sqrt(835.7333) = 28.9090
c. Determine coefficient of determination.
r^2 = SSR/SST = 11566/24102 = 0.479877
d. Determine coefficient of correlation
r = sqrt(0.479877) = 0.69273154973
e. At the .05 significance level does the evidence suggest there is
a positive association between fatalities and the number
unemployed?
yes,
as p-value = 0.002 < 0.05
please rate
Get Answers For Free
Most questions answered within 1 hours.