Question

Suppose data collected suggest a Bernoulli distribution with parameter θ (a special case of the binomial...

Suppose data collected suggest a Bernoulli distribution with parameter θ (a special case of the binomial distribution).

a) Use the method of moments to obtain an estimator of θ.

b) Obtain the maximum likelihood estimator (MLE) of θ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
Question: (Bayesian) Suppose X1,X2,...,,Xn are iid Binomial(3,θ), and the prior distribution of θ is Uniform[0,1]. (a)...
Question: (Bayesian) Suppose X1,X2,...,,Xn are iid Binomial(3,θ), and the prior distribution of θ is Uniform[0,1]. (a) What is the posterior distribution of θ|X1....,Xn? (b) What is the Bayesian estimator of θ for mean square loss?
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find...
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find the maximum likelihood estimator for p.
Let X1,X2,...,Xn be i.i.d. Geometric(θ), θ = 1,2,3,... random variables. a) Find the maximum likelihood estimator...
Let X1,X2,...,Xn be i.i.d. Geometric(θ), θ = 1,2,3,... random variables. a) Find the maximum likelihood estimator of θ. b) In a certain hard video game, a player is confronted with a series of AI opponents and has an θ probability of defeating each one. Success with any opponent is independent of previous encounters. Until first win, the player continues to AI contest opponents. Let X denote the number of opponents contested until the player’s first win. Suppose that data of...
Let B > 0 and let X1 , X2 , … , Xn be a random...
Let B > 0 and let X1 , X2 , … , Xn be a random sample from the distribution with probability density function. f( x ; B ) = β/ (1 +x)^ (B+1), x > 0, zero otherwise. (i) Obtain the maximum likelihood estimator for B, β ˆ . (ii) Suppose n = 5, and x 1 = 0.3, x 2 = 0.4, x 3 = 1.0, x 4 = 2.0, x 5 = 4.0. Obtain the maximum likelihood...
A sample of 4 observations (X1 = 0.4, X2 = 0.6, X3 = 0.7, X4 =...
A sample of 4 observations (X1 = 0.4, X2 = 0.6, X3 = 0.7, X4 = 0.9) is collected from a continuous distribution with pdf (a) Find the point estimate of θ by the Method of Moments. (b) Find the point estimate of θ by the Method of Maximum Likelihood. Use two decimal places
#1 A sample of 4 observations (X1 = 0.4, X2 = 0.6, X3 = 0.7, X4...
#1 A sample of 4 observations (X1 = 0.4, X2 = 0.6, X3 = 0.7, X4 = 0.9) is collected from a continuous distribution with pdf (a) Find the point estimate of θ by the Method of Moments. (b) Find the point estimate of θ by the Method of Maximum Likelihood. Use two decimal places.