Question

Customers arrive at a two server system at an exponential rate 10 customers per hour. However,...

Customers arrive at a two server system at an exponential rate 10 customers per hour. However, customers will only enter the resturant for food if there are no more than three people (including the two currently being attended to). Suppose that the amount of time required to service is exponential with a mean of five minutes for each server.
(a) Write its transition diagram and balance equations.
(b) What proportion of customers enter the resturant?
(c) What is the average number of customers in the resturant?
(d) What is average amount time that an entering customer spends in the resturant?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Customers arrive to a single server system in accordance with a Poisson pro- cess with rate...
Customers arrive to a single server system in accordance with a Poisson pro- cess with rate λ. Arrivals only enter if the server is free. Each customer is either a type 1 customer with probability p or a type 2 customer with probabil- ity 1 − p. The time it takes to serve a type i customer is exponential with rate μi , i = 1, 2. Find the average amount of time an entering customer spends in the system.
Customers arrive at a two-server system according to a Poisson process having rate λ = 5....
Customers arrive at a two-server system according to a Poisson process having rate λ = 5. An arrival finding server 1 free will begin service with that server. An arrival finding server 1 busy and server 2 free will enter service with server 2. An arrival finding both servers busy goes away. Once a customer is served by either server, he departs the system. The service times at server i are exponential with rates µi, where µ1 = 4, µ2...
6. Consider a queueing system having two servers and no queue. There are two types of...
6. Consider a queueing system having two servers and no queue. There are two types of customers. Type 1 customers arrive according to a Poisson process having rate ??, and will enter the system if either server is free. The service time of a type 1 customer is exponential with rate ??. Type 2 customers arrive according to a Poisson process having rate ??. A type 2 customer requires the simultaneous use of both servers; hence, a type 2 arrival...
Customers arrive at bank according to a Poisson process with rate 20 customers per hour. The...
Customers arrive at bank according to a Poisson process with rate 20 customers per hour. The bank lobby has enough space for 10 customers. When the lobby is full, an arriving customers goes to another branch and is lost. The bank manager assigns one teller to customer service as long as the number of customers in the lobby is 3 or less. She assigns two tellers if the number is more than 3 but less than 8. Otherwise she assigns...
During lunch hour, customers arrive at a fast-food restaurant at the rate of 120 customers per...
During lunch hour, customers arrive at a fast-food restaurant at the rate of 120 customers per hour. The restaurant has one line, with three workers taking food orders at independent service stations. Each worker takes an exponentially distributed amount of time–on average 1 minute–to service a customer. Let Xt denote the number of customers in the restaurant (in line and being serviced) at time t. The process (Xt)t≥0 is a continuous-time Markov chain. Exhibit the generator matrix.
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and...
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the service rate of the system? 2.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the system utilization? (Show answer as a decimal.) 3.)Suppose that this system has 3 servers instead of 5. What is the probability there are no customers in the...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Customers arrive at a suburban ticket outlet at the rate of 14 per hour on Monday...
Customers arrive at a suburban ticket outlet at the rate of 14 per hour on Monday mornings (exponential interarrival times). Selling the tickets and providing general information takes an average of 3 minutes per customer, and varies exponentially. There is 1 ticket agent on duty on Mondays. What is the average number of customers waiting in line? A. 1.633 B. 2.333 C. 2.5 D. 3.966
ANSWER THE FOUR PARTS OR DON'T ANSWER AT ALL. Mixed Poisson/exponential Customers arrive at the drive-up...
ANSWER THE FOUR PARTS OR DON'T ANSWER AT ALL. Mixed Poisson/exponential Customers arrive at the drive-up window of a fast-food restaurant at a rate of 2 per minute during the lunch hour (12-1pm). a. What is the probability that exactly 3 customers will arrive in 1 minute? 1 customer will arrive in 5 minutes? b. What is the probability that no customers will arrive in 2 minutes? c. Given a customer has just arrived, what is the probability that the...