An internal study by the Technology Services department at Lahey Electronics revealed company employees receive an average of 4.6 non-work-related e-mails per hour. Assume the arrival of these e-mails is approximated by the Poisson distribution.
What is the probability Linda Lahey, company president, received exactly 1 non-work-related e-mail between 4 P.M. and 5 P.M. yesterday? (Round your probability to 4 decimal places.)
What is the probability she received 8 or more non-work-related e-mails during the same period? (Round your probability to 4 decimal places.)
What is the probability she received four or less non-work-related e-mails during the period? (Round your probability to 4 decimal places.)
When we want to predict the probability of certain events in a fixed interval of time, poison distribution follows. The probability mass function of poison distribution is,
1)
2)
x | Pr |
0 | 0.010052 |
1 | 0.046238 |
2 | 0.106348 |
3 | 0.163068 |
4 | 0.187528 |
5 | 0.172526 |
6 | 0.13227 |
7 | 0.08692 |
Pr(X<=7) | 0.904949 |
Pr(X>=8) | 0.095051 |
3)
x | Pr |
0 | 0.010052 |
1 | 0.046238 |
2 | 0.106348 |
3 | 0.163068 |
4 | 0.187528 |
Pr(X<=4) | 0.513234 |
Get Answers For Free
Most questions answered within 1 hours.