You want to build an interval estimate for the proportion of adult Hoosiers who favor legalizing Sunday sales of alcoholic beverages in Indiana. You survey a random sample of 820 adult Hoosiers, of whom 574 favor Sunday liquor sales. | ||||||||
29 | What is the margin of error for an interval with a 90% level of confidence? | |||||||
a | 0.026 | |||||||
b | 0.032 | |||||||
c | 0.038 | |||||||
d | 0.043 | |||||||
30 | The interval estimate with a 5% error probability is, | |||||||
a | 0.680 | 0.720 | ||||||
b | 0.674 | 0.726 | ||||||
c | 0.669 | 0.731 | ||||||
d | 0.659 | 0.741 | ||||||
31 | If you wanted to build a 95% interval estimate with a margin of error of ±2 percentage points, how many persons would you have to include in your sample? Use 0.6 for the planning value. | |||||||
a | 1998 | |||||||
b | 2006 | |||||||
c | 2155 | |||||||
d | 2305 | |||||||
32 | Suppose someone else reported a 95% interval estimate shown below: | |||||||
0.688 | 0.752 | |||||||
What is the point estimate for this interval? | ||||||||
a | 0.69 | |||||||
b | 0.71 | |||||||
c | 0.72 | |||||||
d | 0.73 | |||||||
33 | What is the margin of error for this estimate? | |||||||
a | 0.032 | |||||||
b | 0.029 | |||||||
c | 0.026 | |||||||
d | 0.024 | |||||||
34 | What is the sample size used to obtain this estimate? | |||||||
a | 722 | |||||||
b | 757 | |||||||
c | 798 | |||||||
d | 805 |
29)p=574/820=0.7
for 90% CI ; critical z=1.645
margin of error for an interval with a 90% level of confidence =z*sqrt(p(1-p)/n)=0.026
30)
interval estimate with a 5% error probability is:
0.669 ; 0.731
31)
here margin of error E = | 0.020 | |
for95% CI crtiical Z = | 1.960 | |
estimated proportion=p= | 0.600 | |
required sample size n = | p*(1-p)*(z/E)2= | 2305.00 |
32)
point estimate=(0.752+0.688)/2= 0.72
33)
margin of error=(0.752-0.688)/2=0.032
34)
here margin of error E = | 0.032 | |
for95% CI crtiical Z = | 1.960 | |
estimated proportion=p= | 0.720 | |
required sample size n = | p*(1-p)*(z/E)2= | 757.00 |
Get Answers For Free
Most questions answered within 1 hours.