Question

Let Y be the liner combination of the independent random variables X1 and X2 where Y...

Let Y be the liner combination of the independent random variables X1 and X2 where Y = X1 -2X2

suppose X1 is normally distributed with mean 1 and standard devation 2

also suppose the X2 is normally distributed with mean 0 also standard devation 1

find P(Y>=1) ?

Homework Answers

Answer #1

X1 is normally distributed with mean 1 and standard deviation 2

X2 is normally distributed with mean 0 also standard deviation 1

Therefore 2X2 is normally distributed with mean = 2*0 =0 also standard deviation =2*1 = 2

Given Y = X1 -2X2

Therefore Y is normally distributed with mean µ = 1 - 0 = 1 also standard deviation σ = = 2.8284

P( Y ≥ 1 )

=

= P( z ≥ 0 )

= 1 - P( z ≤ 0 )

= 1 - 0.5 ---- ( 0.5 is table value for 0 , using z score table )

P( Y ≥ 1 ) = 0.5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the...
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the median of X1, X2, X3 (that is the middle of the three values). Find the conditional CDF of X1, given the event Y = 1/2. Under this conditional distribution, is X1 continuous? Discrete?
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z = max(X1, X2). (a) Show that Y ∼ expon(2λ) (b) Find E(Y ) and E(Z). (c) Find the conditional density fZ|Y (z|y). (d) FindP(Z>2Y).
Let X1 and X2 be two independent geometric random variables with the probability of success 0...
Let X1 and X2 be two independent geometric random variables with the probability of success 0 < p < 1. Find the joint probability mass function of (Y1, Y2) with its support, where Y1 = X1 + X2 and Y2 = X2.
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1).
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
Suppose that X1 and X2 are independent standard normal random variables. Show that Z = X1...
Suppose that X1 and X2 are independent standard normal random variables. Show that Z = X1 + X2 is a normal random variable with mean 0 and variance 2.