Question

Let Xl, n be a random sample from a gamma distribution with parameters a = 2...

Let Xl, n be a random sample from a gamma distribution with parameters a = 2 and p = 20.

     a)         Find an estimator , using the method of maximum likelihood

b) Is the estimator obtained in part a) is unbiased and consistent estimator for the parameter 0?

c) Using the factorization theorem, show that the estimator found in part a) is a sufficient estimator of 0.

Homework Answers

Answer #1

ANSWER:

a)

b)

c)

NOTE:: I HOPE THIS ANSWER IS HELPFULL TO YOU......**PLEASE SUPPORT ME WITH YOUR RATING......

**PLEASE GIVE ME "LIKE".....ITS VERY IMPORTANT  FOR,ME......PLEASE SUPPORT ME .......THANK YOU

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X have a gamma distribution with  and  which is unknown. Let  be a random sample from this distribution....
Let X have a gamma distribution with  and  which is unknown. Let  be a random sample from this distribution. (1.1) Find a consistent estimator for  using the method-of-moments. (1.2) Find the MLE of  denoted by . (1.3) Find the asymptotic variance of the MLE, i.e. (1.4) Find a sufficient statistic for . (1.5) Find MVUE for .
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ?...
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ? ∈ (0, ∞). a) Determine the likelihood function L(?). b) Use the Fisher–Neyman factorization theorem to determine a sufficient statistic S for ?.
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find...
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find the maximum likelihood estimator for λ. (NOT PI FUNCTION) (b) Is the estimator unbiased? (c) Is the estimator consistent?
Show that the sum of the observations of a random sample of size n from a...
Show that the sum of the observations of a random sample of size n from a gamma distribution that has pdf f(x; θ) = (1/θ)e^(−x/θ), 0 < x < ∞, 0 < θ < ∞, zero elsewhere, is a sufficient statistic for θ. Use Neyman's Factorization Theorem.
a. If ? ̅1 is the mean of a random sample of size n from a...
a. If ? ̅1 is the mean of a random sample of size n from a normal population with mean ? and variance ?1 2 and ? ̅2 is the mean of a random sample of size n from a normal population with mean ? and variance ?2 2, and the two samples are independent, show that ?? ̅1 + (1 − ?)? ̅2 where 0 ≤ ? ≤ 1 is an unbiased estimator of ?. b. Find the value...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...