Question

Emily plays a game that costs $1. The probability the game returns nothing is p. The...

Emily plays a game that costs $1. The probability the game returns nothing is p. The probability the game returns $1 is 1/4. The probability the game returns $2 is (3/4)-p. Assume Emily plays the game 100 times and starts with $100. What is the value of p in which after these 100 games Emily can expect to end up with half of her money?

Homework Answers

Answer #1

Answer, p=5/8

Complete solution is given in attached image:

Thank You.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The probability that someone will win a certain game is p = 0.67 p=0.67 . Let...
The probability that someone will win a certain game is p = 0.67 p=0.67 . Let x x be the random variable that represents the number of wins in 1286 1286 attempts at this game. Assume that the outcomes of all games are independent. What is the mean number of wins when someone plays the game 1286 times? (Round your answer to 1 place after the decimal point, if necessary.) μ μ = What is the standard deviation for the...
The probability that someone will win a certain game is p = 0.37 p=0.37 . Let...
The probability that someone will win a certain game is p = 0.37 p=0.37 . Let x x be the random variable that represents the number of wins in 655 655 attempts at this game. Assume that the outcomes of all games are independent. What is the mean number of wins when someone plays the game 655 times? (Round your answer to 1 place after the decimal point, if necessary.) μ μ = What is the standard deviation for the...
Joe Smith plays a betting game with his friends. He puts in one dollar to join...
Joe Smith plays a betting game with his friends. He puts in one dollar to join the game. If he wins the game, he gets $2. If he loses, he gets nothing, so his gain is –$1. Joe Smith is planning to play the game 100 times. The 100 outcomes will be independent of one another. Let Vi, i = 1, 2, ..., 100 be the 100 outcomes. Then each Vi has the same probability distribution: v -1 1 p(v)...
(Section: Joint distributions) 1) Suppose that Kirie goes to a bowling alley to plays some game....
(Section: Joint distributions) 1) Suppose that Kirie goes to a bowling alley to plays some game. In one of those games played, her scored follows a pattern of normal distribution by an average of one hundred and forty with a standard deviation of twenty. She has played for two games in the roll, and scores in each game had the same probability distribution. Let A and B be random variables, and C = A + B be her scores of...
Lets's say I flip a coin which a probability p of turning up heads. The game...
Lets's say I flip a coin which a probability p of turning up heads. The game is structured in the way that I win the game if heads appears x times before tails has appeared y times. How can I represent this probability in the form of a summation? In terms of x,y and p.
For each Games Fair game, answer the following questions, 1. Create the probability distribution in a...
For each Games Fair game, answer the following questions, 1. Create the probability distribution in a table for all the outcomes where X is the random variable representing the number of points awarded. 2. Communicate how you arrived at the probability of each outcome. 3. What is the expected value, E(X), for the game? You may include this in your table from the distribution. If the game costs 10 points to play, how much would the player expect to win...
You are trying to decide whether to play a carnival game that costs $1.50 to play....
You are trying to decide whether to play a carnival game that costs $1.50 to play. The game consists of rolling 3 fair dice. If the number 1 comes up at all, you get your money back, and get $1 for each time it comes up. So for example if it came up twice, your profit would be $2. The table below gives the probability of each value for the random variable X, where: X = profit from playing the...
$ (prize) $(profit) x = # of heads P(x) $1 $3 0 0.03125 $ 1 $3...
$ (prize) $(profit) x = # of heads P(x) $1 $3 0 0.03125 $ 1 $3 1 0.15625 $1 $ 1 2 0.31250 $1 $1 3 0.31250 $ 1 $0 4 0.15625 $ 1 $0 5 0.03125 1. A fair coin is tossed five times. The probability of observing “x” heads among the 5 coins is given in the table above. A particular game consists of tossing a fair coin 5 times. It costs $1 to play the game; you...
In the game of​ roulette, a player can place a ​$4 bet on the number 24...
In the game of​ roulette, a player can place a ​$4 bet on the number 24 and have a StartFraction 1 Over 38 EndFraction probability of winning. If the metal ball lands on 24​, the player gets to keep the ​$4 paid to play the game and the player is awarded an additional ​$140. ​ Otherwise, the player is awarded nothing and the casino takes the​ player's ​$4. What is the expected value of the game to the​ player? If...
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) =...
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) = 3/4, 100 times. Every time you flip a heads you win $8, and every time you flip a tails you lose $3. Let X be the amount of money you win/lose during the game. Justify your answers and show all work. Compute E(X) andCompute V (X).