Question

The shape of the distribution of the time required to get an oil change at a...

The shape of the distribution of the time required to get an oil change at a

20​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.6 minutes and the standard deviation is 4.7 minutes.

Complete parts ​((c).

Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform

45 oil changes between 10 A.M. and 12 P.M. Treating this as a random​ sample, there would be a​ 10% chance of the mean​ oil-change time being at or below what​ value? This will be the goal established by the manager.

Homework Answers

Answer #1

Even though the shape of the distribution of the time required to get an oil change at a 20​-minute ​oil-change facility is unknown. since sample size = n = 45 > 30 Large Sample and Population Standard Deviation = = 4.7 is provided, by Central Limit Theorem, the Sampling Distribution of Sample means is Normal Distribution.

= 21.6

= 4.7

n = 45

SE = /

= 4.7/

= 0.7006

Minimum 10% corresponds to area = 0.50 - 0.10 = 0.40 frommid value to Z on LHS.

Table of Area Under Standard Normal Curve gives Z = - 1.28

So,

we get
Z = - 1.28 = ( - 21.6)/0.7006

So,

= 21.6 - (1.28 X 0.7006)

= 20.7032

So,

Answer is:

20.7032

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 15 ​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 16.1 minutes, and the standard deviation is 4.2 minutes. C) Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform 40 oil changes between 10 A.M. and 12 P.M. Treating this as a random​...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 15​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 16.5 minutes​, and the standard deviation is 4.3 minutes. ​-Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform 35 oil changes between 10 A.M. and 12 P.M. Treating this as a random​ sample, there...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.4 minutes​, and the standard deviation is 4.2 minutes. Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform 45 oil changes between 10 A.M. and 12 P.M. Treating this as a random​ sample, there...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 1515 -minute oil-change facility is unknown. However, records indicate that the mean time is 16.6 minutes and the standard deviation is 3.6 minutes Complete parts (a) through (c) below. What is the probability that a random sample of nequals=35 oil changes results in a sample mean time less than 15 minutes? Suppose the manager agrees to pay each employee a $50 bonus if they...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 10-minute oil-change facility is unknown.​ However, records indicate that the mean time is 11.2 minutes and the the standard deviation is 4.9 minutes. The sample size is greater than or equal to 30. Please answer C below: What is the probability that a random sample of n=35 oil changes results in a sample mean time less than 10 minutes? The probability is approximately 0.0735...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.4 minutes​, and the standard deviation is 3.7 minutes. Complete parts ​(a) through ​(c). ​(a) To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? ​(b) What is the probability that a random sample of nequals35 oil changes results in a sample mean time...
The shape of the distribution of the time is required to get an oil change at...
The shape of the distribution of the time is required to get an oil change at a 15-minute oil-change facility is unknown. However, records indicate that the mean time is 16.2 minutes, and the standard deviation is 4.2 minutes. Complete parts (a) through (c). (a) To compute probabilities regarding the sample mean using the normal model, what size sample would be required? A. The sample size needs to be less than or equal to 30. B. The sample size needs...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 10 -minute oil-change facility is unknown. However, records indicate that the meantime is 11.8 minutes , and the standard deviation is 4.6 minutes.Complete parts (a) through (c) below. (a) To compute probabilities regarding the sample mean using the normal model, what size sample would be required? Choose the required sample size below. A. The sample size needs to be greater than 30. B. Any...
The shape of the distribution of the time required to get an oil change facility is...
The shape of the distribution of the time required to get an oil change facility is unknown. However, records indicate that the mean time is 21.8 minutes, and the standard deviation is 4.9 minutes. suppose the manager agrees to pay each employee a $50 bonus if they meet a certain goal. On a typical Saturday the oil change facility will perform 40 oil changes between 10 am and 12pm.Treating this as a random sample there would be a 10% chance...
Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain...
Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform 40 40 oil changes between 10 A.M. and 12 P.M. Treating this as a random​ sample, at what mean​ oil-change time would there be a​ 10% chance of being at or​ below? This will be the goal established by the manager. mean=11.2 standard deviation=4.9
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT