Question

Given a random sample size n=1600 from a binomial probability distribution with P=0.40 do the following......

Given a random sample size n=1600 from a binomial probability distribution with P=0.40 do the following... with probability of 0.20 Find the number of successes is less than how many? Please show your work

Homework Answers

Answer #1

We are given the distribution here as:

As the sample size here is very very large, the distribution could be approximated to a normal distribution here as:

From standard normal tables, we have here:

P(Z < -0.842) = 0.2

Therefore the number of successes is computed here as:

= Mean -0.842*Std Dev

Therefore 623 is the required number of successes here.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a random sample of size of n equals =3,600 from a binomial probability distribution with...
Given a random sample of size of n equals =3,600 from a binomial probability distribution with P equals=0.50​, complete parts​ (a) through​ (e) below. Click the icon to view the standard normal table of the cumulative distribution function .a. Find the probability that the number of successes is greater than 1,870. ​P(X greater than>1 comma 1,870​) ​(Round to four decimal places as​ needed.)b. Find the probability that the number of successes is fewer than 1 comma 1,765. ​P(X less than<1...
A random sample of size n = 50 is selected from a binomial distribution with population...
A random sample of size n = 50 is selected from a binomial distribution with population proportion p = 0.8. Describe the approximate shape of the sampling distribution of p̂. Calculate the mean and standard deviation (or standard error) of the sampling distribution of p̂. (Round your standard deviation to four decimal places.) mean = standard deviation = Find the probability that the sample proportion p̂ is less than 0.9. (Round your answer to four decimal places.)
Let x be binomial random variable with n=50 and p=.3. The probability of less than or...
Let x be binomial random variable with n=50 and p=.3. The probability of less than or equal to 13 successes, when using the normal approximation for binomial is ________. (Please show how to work the problem). a) -.6172 b) .3086 c) 3.240 d) .2324 e) .2676 f) -.23224
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P (X ≥ 5 ), n = 6, p = 0.3 How do I determine if the answer should be Probability result or Cumulative result? Can you show me how to create a formula in excel to solve this problem?...
Consider a binomial probability distribution with p=.35 and n=7. what is the probability of the following?...
Consider a binomial probability distribution with p=.35 and n=7. what is the probability of the following? a. exactly three successes P(x=3) b. less than three successes P(x<3) c. five or more successes P(x>=5)
Given a binomial random variable with n = 48 and p = 0.62 find the probability...
Given a binomial random variable with n = 48 and p = 0.62 find the probability of obtaining more than 21 but no more than 34 successes to three decimal places.
Develop an algorithm for generation a random sample of size N from a binomial random variable...
Develop an algorithm for generation a random sample of size N from a binomial random variable X with the parameter n, p. [Hint: X can be represented as the number of successes in n independent Bernoulli trials. Each success having probability p, and X = Si=1nXi , where Pr(Xi = 1) = p, and Pr(Xi = 0) = 1 – p.] (a) Generate a sample of size 32 from X ~ Binomial (n = 7, p = 0.2) (b) Compute...
Assuming the binomial distribution applies with a sample size of nequals10​, find the values below. a....
Assuming the binomial distribution applies with a sample size of nequals10​, find the values below. a. the probability of 5 or more successes if the probability of a success is 0.65 b. the probability of fewer than 4 successes if the probability of a success is 0.20 c. the expected value of the random variable if the probability of success is 0.55 d. the standard deviation of the random variable if the probability of success is 0.55
Suppose we have a binomial distribution with n trials and probability of success p. The random...
Suppose we have a binomial distribution with n trials and probability of success p. The random variable r is the number of successes in the n trials, and the random variable representing the proportion of successes is p̂ = r/n. (a) n = 44; p = 0.53; Compute P(0.30 ≤ p̂ ≤ 0.45). (Round your answer to four decimal places.) (b) n = 36; p = 0.29; Compute the probability that p̂ will exceed 0.35. (Round your answer to four...
A binomial probability distribution has p = 0.20 and n = 100. (d) What is the...
A binomial probability distribution has p = 0.20 and n = 100. (d) What is the probability of 17 to 23 successes? Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.) (e) What is the probability of 14 or fewer successes? Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT