Question

Consider the function f(x/y)=(y^xe^-y)/x!, x=0,1,... y>=0 show that for each fixed y, f(x/y)id a p.d.f, the...

Consider the function f(x/y)=(y^xe^-y)/x!, x=0,1,... y>=0

show that for each fixed y, f(x/y)id a p.d.f, the conditional p.d.f of r.v. X, given another r.v. Y equals y

If the marginal p.d.f of Y is Negative Exponentioal with parameter lambds=1, what is the joint p.d.f of X,Y?

Show that the marginal p.d.f of X is given by f(x)=(1/2)^(x+1), x=0,1,2...

Homework Answers

Answer #2

Given,

   for x=0,1,... y>=0

By exponential series, we know that

Therefore,

and hence f(x|y) is a p.d.f

Given, marginal p.d.f of Y is Negative Exponential with parameter lambda = 1, then

   for y > 0

The joint p.d.f of X,Y is given as,

   for x=0,1,... y>=0

The marginal p.d.f of X is given as,

Let z = 2y, then dz = 2dy and the limits of the integration is from z = 0 to z =

So,

Using Gamma function,

  

for x=0,1,2,...

     for x=0,1,2,...

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let X and Y have the joint p.d.f. f(x,y)=2(x+y), 0<x<y<1. Find the marginal p.d.f. of...
3. Let X and Y have the joint p.d.f. f(x,y)=2(x+y), 0<x<y<1. Find the marginal p.d.f. of X and the marginal p.d.f. of Y. Determine whether Xand Y are independent.
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
Let X and Y have the joint p.d.f. f(x, y) = 1I(|x^2−y^2|<1). Then, (a) Find the...
Let X and Y have the joint p.d.f. f(x, y) = 1I(|x^2−y^2|<1). Then, (a) Find the marginal distributions of X and Y respectively. (b) Obtain the conditional distribution of Y given X=x,for 0< x <1. (c) Find the mean and variance of X only.
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1        ...
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1         = 0 otherwise 2. Then, (a) Find the marginal distributions of X and Y respectively. (b) Obtain the conditional distribution of Y given X = x, for 0 < x < 1. (c) Find the mean and variance of X only.
Suppose that the joint density function of X and Y  is given by f (x, y)  ...
Suppose that the joint density function of X and Y  is given by f (x, y)  =  45 xe−3x(y + 5)     x  >  0, y  >  0. (a) Find the conditional density of  X, given Y  =  y. (b) Find the conditional density of Y, given  X  =  x. (c) Find P(Y  >  5 | X  =  4).
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y)...
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y) = 2 , 0 < x < y < 1 = 0, otherwise Calculate P(x+y >1)
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y...
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y −xy))/7 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2. Find the following. (a) E[X], E[Y ] (b) Cov[X,Y]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT