A survey of 495 citizens found that 342 of them favor a new bill introduced by the city. We want to find a 95% confidence interval for the true proportion of the population who favor the bill. What is the lower limit of the interval? Use the 68-95-99.7% rule our use the Z table. How do I do this in excel?
x | 342 |
n | 495 |
p-hat(x/n) | 0.690909091 |
SE= sqrt(p-hat(1-p-hat)/n) | 0.020770692 |
Z=NORMSINV(1-0.025) | 1.959963985 |
E(margin of error)=Z*SE | 0.040709809 |
___________________________________________________
Lower Limit | Upper Limit | |
95% CI | (p-hat)-E | (p-hat)+E |
Answer | 0.650199282 | 0.7316189 |
===============================================
Lower Limit of the Interval = 0.650199282
==============================================
Note - Round down decimal places according to your requirement
Get Answers For Free
Most questions answered within 1 hours.