Question

The probability density function of XX, the lifetime of a certain type of device (measured in...

The probability density function of XX, the lifetime of a certain type of device (measured in months), is given by


f(x)={0 if x≤14
14/x^2 if x>14


Find the following: P(X>21) =
  

The cumulative distribution function of X:F(x)=⎧
The probability that at least one out of 6 devices of this type will function for at least 50 months:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability...
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability density function: f (x) = 1/50 e^(-x/50) for x≥ 0 what is the mean lifetime of the device? what is the probability that the device fails in the first 25 hours of operation? what is the probability that the device operates 100 or more hours before failure?
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability...
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability density function: f (x) = 1/50 e^(-x/50) for x≥ 0 a) what is the mean lifetime of the device? b) what is the probability that the device fails in the first 25 hours of operation? c) what is the probability that the device operates 100 or more hours before failure?
There are two fuses in an electrical device. Let X denote the lifetime of the first...
There are two fuses in an electrical device. Let X denote the lifetime of the first fuse, and let Y denote the lifetime of the second fuse (both in years). Assume the joint probability density function of X and Y is f(x,y)=12xy(1-y), 0<x<1, 0<y<1 What is the probability that both fuses last at most 6 months?        What is the probability that the first fuse lasts longer than 6 months given that the second fuse lasts 3 months.    ...
The lifetime X (in years) of a machine has a probability density function (pdf): ?(?) =...
The lifetime X (in years) of a machine has a probability density function (pdf): ?(?) = ??−?⁄?,    ? > 0; ? > 0. Find the value of the parameter ?. Give the two names of this distribution. Find E(X), Var(X), and ?(?5?−?⁄3). Find the constant c such that P(X > c) = 0.95.
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function 2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function. 3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function. 4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞). a. Show that f(x) is a probability density function b. . Find P(0 ≤...
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
For probability density function of a random variable X, P(X < a) can also be described...
For probability density function of a random variable X, P(X < a) can also be described as: F(a), where F(X) is the cumulative distribution function. 1- F(a) where F(X) is the cumulative distribution function. The area under the curve to the right of a. The area under the curve between 0 and a.
let X be a random variable that denotes the life (or time to failure) in hours...
let X be a random variable that denotes the life (or time to failure) in hours of a certain electronic device. Its probability density function is given by f(x){ 0.1 e−0.1x, x > 0 , 0 , elsewhere (a) What is the mean lifetime of this type of device? (b) Find the variance of the lifetime of this device. (c) Find the expected value of X2 − 20X + 100.
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT