Question

Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....

Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each suit, there are 10 number cards.

(a). What is the probability of drawing a red King, then a black Jack, followed by a red number card without replacement?

(b). In a poker game, a royal flush is a hand consisting of the cards A, K, Q, J, 10 of the same suit. Two players A and B are playing poker with a deck of cards. First, A is dealt a hand (i.e. 5 cards) from the deck without replacement. Then B is dealt a hand (i.e., 5 cards) from the remaining deck without replacement. What is the conditional probability that B also gets a royal flush given that A has a royal flush?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Here is a table showing all 52 cards in a standard deck. Face cards Color Suit...
Here is a table showing all 52 cards in a standard deck. Face cards Color Suit Ace Two Three Four Five Six Seven Eight Nine Ten Jack Queen King Red Hearts A ♥ 2 ♥ 3 ♥ 4 ♥ 5 ♥ 6 ♥ 7 ♥ 8 ♥ 9 ♥ 10 ♥ J ♥ Q ♥ K ♥ Red Diamonds A ♦ 2 ♦ 3 ♦ 4 ♦ 5 ♦ 6 ♦ 7 ♦ 8 ♦ 9 ♦ 10 ♦ J...
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and...
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and 13 cards in each suit (Ace thru 10, Jack, Queen, and King; the last three are considered face cards). A card is drawn at random from a standard 52-card deck.   What is the probability that the card is a number card given the card is black (Spades and Clubs)? Group of answer choices 6/26 1 - 10/26 20/52 10/13
5 cards are randomly selected from a standard deck of 52 cards to form a poker...
5 cards are randomly selected from a standard deck of 52 cards to form a poker hand. Determine the probability of being dealt a straight flush (five cards in sequence in the same suit but not a royal flush. Note: A royal flush is 10, Jack, Queen, King, Ace all in the same suit. Note: Aces can be high or low).
he following question involves a standard deck of 52 playing cards. In such a deck of...
he following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
Determine the poker odds of drawing the following hand from a standard card deck. (4 suits,...
Determine the poker odds of drawing the following hand from a standard card deck. (4 suits, 13 ranks in each suit.) What are the odds of drawing a royal flush (AKQJ10 all of the same suit)? Drawing cards is WITHOUT replacement. (NOTE: If necessary, lay out 52 cards on a table and do a dry run before computing the probabilities!) In order to get a royal flush in spades, you must pick the following 5 cards: What is the probability...
Part A Poker Hands: In this activity, we will apply some of the various counting techniques...
Part A Poker Hands: In this activity, we will apply some of the various counting techniques that we have studied including the product and sum rules, the principle of inclusion-exclusion, permutations, and combinations. Our application will be counting the number of ways to be dealt various hands in poker, and analyzing the results. First, if you are not familiar with poker the following is some basic information.   These are the possible 5-card hands: Royal Flush (A,K,Q,J,10 of the same suit);...
As shown above, a classic deck of cards is made up of 52 cards, 26 are...
As shown above, a classic deck of cards is made up of 52 cards, 26 are black, 26 are red. Each color is split into two suits of 13 cards each (clubs and spades are black and hearts and diamonds are red). Each suit is split into 13 individual cards (Ace, 2-10, Jack, Queen, and King). If you select a card at random, what is the probability of getting: (Round to 4 decimal places where possible) a) A 9 of...
As shown above, a classic deck of cards is made up of 52 cards, 26 are...
As shown above, a classic deck of cards is made up of 52 cards, 26 are black, 26 are red. Each color is split into two suits of 13 cards each (clubs and spades are black and hearts and diamonds are red). Each suit is split into 13 individual cards (Ace, 2-10, Jack, Queen, and King). If you select a card at random, what is the probability of getting: 1) A(n) 8 of Heart s? 2) A Club or Spade?...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
Answer ASAP Probability and Stats An ordinary deck of 52 cards consists of 4 suits (hearts,...
Answer ASAP Probability and Stats An ordinary deck of 52 cards consists of 4 suits (hearts, diamonds, spades and clubs), each having 13 ranks (2, 3, ...,10, J, Q, K, A). 5 cards are randomly selected from the deck (without replacement). What is the probability that the outcome consists of (a) 5 hearts, or (b) 3 diamonds and 2 spades, or (c) cards from more than one suit. In this question, there is no need to evaluate your expression to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT