Question

A college wants to decide whether it should keep an ATM on campus. The results of...

A college wants to decide whether it should keep an ATM on campus. The results of a sample of 100 students show that 24 of them do not use the ATM. In the following four questions, you will generate an interval estimate for the population proportion of students who do not use the ATM, at the 95% Confidence Level. First, give the appropriate value for Z.

Find the estimated standard error of the proportion.

Give the lower limit of the Confidence Interval.

Give the Upper Limit of the Confidence Interval estimate of the true population proportion of students who did not use the ATM.

Homework Answers

Answer #1

Solution :

Given that,

n = 100

x = 24

= x / n = 24 / 100 = 0.24

1 - = 1 - 0.24 = 0.76

At 95% confidence level the z is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.96

Margin of error = E = Z / 2 * (( * (1 - )) / n)

= 1.96 * (((0.24 * 0.76) / 100)

= 0.084

A 95% confidence interval for population proportion p is ,

- E < P < + E

0.24 - 0.084 < p < 0.24 + 0.084

0.156 < p < 0.324

(0.156,0.324)

Lower limit = 0.156

Upper limit = 0.324

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A college registrar wants to estimate the proportion of all students at the college who are...
A college registrar wants to estimate the proportion of all students at the college who are dissatisfied with the online registration procedure. What is the most conservative estimate of the minimum sample size that would limit the margin of error to be within 0.045 of the population proportion for a 95% confidence interval?
Jane wants to estimate the proportion of students on her campus who eat cauliflower. After surveying...
Jane wants to estimate the proportion of students on her campus who eat cauliflower. After surveying 11 ​students, she finds 22 who eat cauliflower. Obtain and interpret a 95​% confidence interval for the proportion of students who eat cauliflower on​ Jane's campus using Agresti and​ Coull's method.
In a simple random sample of 500 freshman students, 276 of them live on campus. You...
In a simple random sample of 500 freshman students, 276 of them live on campus. You want to claim that majority of college freshman students in US live on campus. A) Are the assumptions for making a 95% confidence interval for the true proportion of all college freshman students in the United States who live on campus satisfied? yes/no? B) What is the sample proportion? C.) A 95% confidence interval for the actual proportion of college freshman students in the...
A survey is sent to 45 UCF students asking whether or not they understand UCF's "excess...
A survey is sent to 45 UCF students asking whether or not they understand UCF's "excess credit hours" policy. Of those, 36 students answered that they did. Construct the 95% confidence interval for to try to cover the population proportion of UCF students who understand that policy. Answer the following questions related to that confidence interval, rounding all numeric responses to the nearest hundredths. What is the point estimate sample proportion?   What is the standard error?   What is the lower...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 50 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 45 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 45 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
DO NOT RESPOND UNLESS YOU INTEND TO ANSWER EACH QUESTION 1. A university dean is interested...
DO NOT RESPOND UNLESS YOU INTEND TO ANSWER EACH QUESTION 1. A university dean is interested in determining the proportion of students who receive some sort of financial aid. Rather than examine the records for all students, the dean randomly selects 200 students and finds that 118 of them are receiving financial aid. The 95% confidence interval for p is 0.59 ± 0.07. Interpret this interval. a. We are 95% confident that the true proportion of all students receiving financial...
The Associate Dean for Library Services at the college wants to estimate the mean number of...
The Associate Dean for Library Services at the college wants to estimate the mean number of times students use the library during a semester. A sample study of 35 students showed a mean of 11 times with a standard deviation of 3 times. A. What is the population mean, using a 95 percent confidence interval? B.Illustrate whether or not the finite population correction factor be used to determine the 95% confidence interval for the mean number of times students visit...
question 1. A marketing specialist wants to estimate the average amount spent by visitors to an...
question 1. A marketing specialist wants to estimate the average amount spent by visitors to an online retailer's newly-designed website. From the data in a preliminary study she guesses that the standard deviation of the amount spent is about 16 dollars. How large a sample should she take to estimate the mean amount spent to within 4 dollars with 95% confidence? (Round your answer up to the next largest integer). ______ question 2. Pepsi wants to use this technique to...