probability and statics
Question 5: Suppose that the number of patients of Covid-19 in
Lahore in the month of June per day have Mean and S.D is 350 and 50
respectively. It is assumed that data is normally distributed. If
any day of June is selected at random, find the probability that
the number of patients are
Between 310 to 500.
Less than 400 and it is given that the patients are between 310 to
500.
Areas Under the Unit Normal Curve
z 0 0.01 0.02
0.03 0.04 0.05 0.06
0.07 0.08 0.09
0 0 0.004 0.008
0.012 0.016 0.0199
0.0239 0.0279 0.0319
0.0359
0.1 0.0398 0.0438
0.0478 0.0517 0.0557
0.0596 0.0636 0.0675
0.0714 0.0753
0.2 0.0793 0.0832
0.0871 0.091 0.0948
0.0987 0.1026 0.1064
0.1103 0.1141
0.3 0.1179 0.1217
0.1255 0.1293 0.1331
0.1368 0.1406 0.1443
0.148 0.1517
0.4 0.1554 0.1591
0.1628 0.1664 0.17
0.1736 0.1772 0.1808
0.1844 0.1879
0.5 0.1915 0.195
0.1985 0.2019 0.2054
0.2088 0.2123 0.2157
0.219 0.2224
0.6 0.2257 0.2291
0.2324 0.2357 0.2389
0.2422 0.2454 0.2486
0.2517 0.2549
0.7 0.258 0.2611
0.2642 0.2673 0.2704
0.2734 0.2764 0.2794
0.2823 0.2852
0.8 0.2881 0.291
0.2939 0.2967 0.2995
0.3023 0.3051 0.3078
0.3106 0.3133
0.9 0.3159 0.3186
0.3212 0.3238 0.3264
0.3289 0.3315 0.334
0.3365 0.3389
1 0.3413 0.3438
0.3461 0.3485 0.3508
0.3531 0.3554 0.3577
0.3599 0.3621
1.1 0.3643 0.3665
0.3686 0.3708 0.3729
0.3749 0.377 0.379
0.381 0.383
1.2 0.3849 0.3869
0.3888 0.3907 0.3925
0.3944 0.3962 0.398
0.3997 0.4015
1.3 0.4032 0.4049
0.4066 0.4082 0.4099
0.4115 0.4131 0.4147
0.4162 0.4177
1.4 0.4192 0.4207
0.4222 0.4236 0.4251
0.4265 0.4279 0.4292
0.4306 0.4319
1.5 0.4332 0.4345
0.4357 0.437 0.4382
0.4394 0.4406 0.4418
0.4429 0.4441
1.6 0.4452 0.4463
0.4474 0.4484 0.4495
0.4505 0.4515 0.4525
0.4535 0.4545
1.7 0.4554 0.4564
0.4573 0.4582 0.4591
0.4599 0.4608 0.4616
0.4625 0.4633
1.8 0.4641 0.4649
0.4656 0.4664 0.4671
0.4678 0.4686 0.4693
0.4699 0.4706
1.9 0.4713 0.4719
0.4726 0.4732 0.4738
0.4744 0.475 0.4756
0.4761 0.4767
2 0.4772 0.4778
0.4783 0.4788 0.4793
0.4798 0.4803 0.4808
0.4812 0.4817
2.1 0.4821 0.4826
0.483 0.4834 0.4838
0.4842 0.4846 0.485
0.4854 0.4857
2.2 0.4861 0.4864
0.4868 0.4871 0.4875
0.4878 0.4881 0.4884
0.4887 0.489
2.3 0.4893 0.4896
0.4898 0.4901 0.4904
0.4906 0.4909 0.4911
0.4913 0.4916
2.4 0.4918 0.492
0.4922 0.4925 0.4927
0.4929 0.4931 0.4932
0.4934 0.4936
2.5 0.4938 0.494
0.4941 0.4943 0.4945
0.4946 0.4948 0.4949
0.4951 0.4952
2.6 0.4953 0.4955
0.4956 0.4957 0.4959
0.496 0.4961 0.4962
0.4963 0.4964
2.7 0.4965 0.4966
0.4967 0.4968 0.4969
0.497 0.4971 0.4972
0.4973 0.4974
2.8 0.4974 0.4975
0.4976 0.4977 0.4977
0.4978 0.4979 0.4979
0.498 0.4981
2.9 0.4981 0.4982
0.4982 0.4983 0.4984
0.4984 0.4985 0.4985
0.4986 0.4986
3 0.4987 0.4987
0.4987 0.4988 0.4988
0.4989 0.4989 0.4989
0.499 0.499
3.1 0.499 0.4991
0.4991 0.4991 0.4992
0.4992 0.4992 0.4992
0.4993 0.4993
3.2 0.4993 0.4993
0.4994 0.4994 0.4994
0.4994 0.4994 0.4995
0.4995 0.4995
3.3 0.4995 0.4995
0.4995 0.4996 0.4996
0.4996 0.4996 0.4996
0.4996 0.4997
3.4 0.4997 0.4997
0.4997 0.4997 0.4997
0.4997 0.4997 0.4997
0.4997 0.4998
Question 5: x : the number of patients of Covid-19 in Lahore in the month of June per day
Mean = 350
S.D = 50
P ( Between 310 to 500 ) = P ( 310 < x < 500 )
= P (z < (310-350)/50) - P (z<(500-350)/50)
= P ( z < 3.00) - P ( z < -0.80 )
= 0.9987 - 0.2119
= 0.7868
Answer :
The probability that the number of patients are Between 310 to 500 is 0.7868
P(Less than 400 and it is given that the patients are between 310
to 500) = P ( 310 < x < 400 ) / P ( 310 < x < 500 )
= (0.8413 - 0.2119 ) / 0.7868
= 0.7999
Answer :
P(Less than 400 and it is given that the patients are between 310 to 500) = 0.7999
Get Answers For Free
Most questions answered within 1 hours.