Consider the following time series data.
Week | 1 | 2 | 3 | 4 | 5 | 6 |
Value | 19 | 12 | 15 | 11 | 17 | 15 |
Using the naïve method (most recent value) as the forecast for the next week, compute the following measures of forecast accuracy:
Mean absolute error (MAE)
Mean squared error (MSE)
Mean absolute percentage error (MAPE)
Round your answers to two decimal places.
MAE =
MSE =
MAPE =
Using the average of all the historical data as a forecast for the next period, compute the same three values. Round your answers to two decimal places.
MAE =
MSE =
MAPE =
using naive method
MAE =sum(|y-y^|)/n=22/5=4.4
MSE =sum(|y-y^|)2/n=114/5=22.8
MAPE =(100*|y-y^|/y)n=163.32/5=32.66
week | value (y) | naïve (y^) | E=y-y^ | |E| | E2 | 100*|E|/y |
1 | 19 | |||||
2 | 12 | 19 | -7 | 7 | 49 | 58.33333 |
3 | 15 | 12 | 3 | 3 | 9 | 20 |
4 | 11 | 15 | -4 | 4 | 16 | 36.36364 |
5 | 17 | 11 | 6 | 6 | 36 | 35.29412 |
6 | 15 | 17 | -2 | 2 | 4 | 13.33333 |
MEAN= | 14.83 | 14.80 | -0.80 | 4.40 | 22.80 | 32.66 |
(second part) using average method
MAE =1.83
MSE =5.49
MAPE =14.69
week | value (y) | average(y^) | E=y-y^ | |E| | E2 | 100*|E|/y |
1 | 19 | |||||
2 | 12 | 14.83 | -2.83 | 2.83 | 8.0089 | 23.58333 |
3 | 15 | 14.83 | 0.17 | 0.17 | 0.0289 | 1.133333 |
4 | 11 | 14.83 | -3.83 | 3.83 | 14.6689 | 34.81818 |
5 | 17 | 14.83 | 2.17 | 2.17 | 4.7089 | 12.76471 |
6 | 15 | 14.83 | 0.17 | 0.17 | 0.0289 | 1.133333 |
MEAN= | 14.83 | 14.83 | -0.83 | 1.83 | 5.49 | 14.69 |
sum= | 70 | 74.15 | -4.15 | 9.17 | 27.4445 | 73.43289 |
Get Answers For Free
Most questions answered within 1 hours.