Question

1. Consider the following game. For 3 dollars I will allow you to roll a die...

1. Consider the following game. For 3 dollars I will allow you to roll a die one time. In return, I will pay you the value of the outcome if your roll. (e.g. you roll a 5 and I pay you 5 dollars.) Let X be the net profit (the value left over after subtracting the buy in).

(a) Create a probability distribution table listing the possible values of X and their corresponding probabilities P(X).

(b) Calculate E(X), the expected value of a single roll. (c) What is the probability that you win 1 or more dollars.

(d) What is the probability that you lose money.

(e) If you were to play the game twice, how much money would you expect to win? That is, calculate E(2X).

2 Navel oranges contain an average of 60ml of juice, with a standard deviation of about 30ml. Taylor, an agricultural researcher, will squeeze a sample of 36 of the oranges.

(a) Describe the sampling distribution of the sample average ¯x of the juice contents. (mean and standard deviation).

(b) Within what interval would you expect the sample average to lie, with probability 0.9?

(c) Calculate the probability with which the sample mean ¯x is less than 57.5 ml.

(d) After the experiment, Taylor would like to make mimosas to share with her colleagues. If the recipe calls for a total of 2.25 liters of orange juice, what is the probability that Taylor will have enough juice to follow the recipe? [Hint: Let X be the random variable representing the sum of the juice of the oranges. You may find σ(n · x) = n · σ(x) useful.]

3. Huey, a political advocate and statistical hobbyist in the town of Sacramento is interested in who will be elected the next mayor. A random sample of 40 citizens gave a response that 24 of them were planning to vote for Candidate A. Huey is now interested in constructing a 98% confidence interval for the proportion of citizens planning to vote for Candidate A.

(a) Find the sample proportion.

(b) Find the critical value Zα/2, and the standard error of the sample proportion.

(c) Use b) to calculate the Margin of Error.

(d) Construct the confidence interval.

4. The interval calculated above is too large for Huey’s liking. He would like to get a larger sample size to reduce the margin of error. Huey is still interested in a 98% confidence interval, but would like the margin of error to be at most 5%. Calculate the sample size needed, using the above sample proportion.

Homework Answers

Answer #1

Dear student, we can provide you with the solution to one question & 4 sub-question at a time.

1) a) Here if we roll a die then there is a total of 6 outcomes (1,2,3,4,5,6)  each having a probability of

Roll of die X P(x)
1 -2
2 -1
3 0
4 1
5 2
6 3
Total

b)

c)The probability that you win 1 or more is

d) you lose money when X <0

The probability that you lose money is

e)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Here is a game: you roll a fair die. If the outcome is an odd number...
Here is a game: you roll a fair die. If the outcome is an odd number you win that amount in dollars and the game is over. If the outcome is an even number, you roll the die again. If on the second roll the outcome is a “6” you win six dollars; otherwise, you lose the amount that the die shows. Let X denote the random variable that states how much you win. (a) Write down the probability mass...
In a recent poll, 134 registered voters who planned to vote in the next election were...
In a recent poll, 134 registered voters who planned to vote in the next election were asked if they would vote for a particular candidate and 80 of these people responded that they would. We wish to predict the proportion of people who will vote for this candidate in the election. a) Find a point estimator of the proportion who would vote for this candidate. b) Construct a 90% confidence interval for the true proportion who would vote for this...
In a recent poll, 134 registered voters who planned to vote in the next election were...
In a recent poll, 134 registered voters who planned to vote in the next election were asked if they would vote for a particular candidate and 80 of these people responded that they would. 1. 1. We wish to predict the proportion of people who will vote for this candidate in the election. a) Find a point estimator of the proportion who would vote for this candidate. b) Construct a 90% confidence interval for the true proportion who would vote...
A political candidate has asked you to conduct a poll to determine what percentage of people...
A political candidate has asked you to conduct a poll to determine what percentage of people support him. If the candidate only wants a 4% margin of error at a 97.5% confidence level, what size of sample is needed? When finding the z-value, round it to four decimal places. You want to obtain a sample to estimate a population proportion. At this point in time, you have no reasonable preliminary estimation for the population proportion. You would like to be...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $12. If you roll a 2, 3, 4 or 5, you win $1. Otherwise, you pay $10. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c....
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $9. If you roll a 2, 3, 4 or 5, you win $1. Otherwise, you pay $6 a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table    X P(X)    b. Find the expected profit. $ (Round to the nearest...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $13. If you roll a 4 or 5, you win $5. Otherwise, you pay $6. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ ____ (Round to the nearest cent) c. Interpret...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $20. If you roll a 4 or 5, you win $1. Otherwise, you pay $8. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $7. If you roll a 4 or 5, you win $1. Otherwise, you pay $8. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...
Suppose that you are offered the following "deal." You roll a six sided die. If you...
Suppose that you are offered the following "deal." You roll a six sided die. If you roll a 6, you win $17. If you roll a 4 or 5, you win $2. Otherwise, you pay $10. a. Complete the PDF Table. List the X values, where X is the profit, from smallest to largest. Round to 4 decimal places where appropriate. Probability Distribution Table X P(X) b. Find the expected profit. $ (Round to the nearest cent) c. Interpret the...