Variable Z is distributed standard normal: Z ~ N(0; 1), so using the statistical table of the Standard Normal Distribution provided, find the values of the following probabilities:
(A) P[Z ≤ 1.27] =
(B) P[Z ≥ 0.41] =
(C) P[Z ≤ 1:96] =
(D) P[-1 ≤ Z ≤ 2] =
(E) P(Z ≤ 1.87)
(F) P(Z ≥ - 0.53). Hint: P(Z ≤ - a)=P(Z ≥ a), where a ∈ ?, and a≥0.
(G) P(Z ≤ - 0.06)
(H) P(1.12 ≤ Z ≤ 2.38). Hint: P(a ≤ Z ≤ b) = P(Z ≤ b) - P(Z ≤ a), where a, b ∈ ?.
(I) Find the zvalue such that P(Z ≤ zvalue)=0.975.
a)
P(Z <= 1.27) = 0.8980
b)
P(Z >= 0.41) = 1 - P(Z < 0.41)
= 1 - 0.6591
= 0.3409
c)
P(Z <= 1.96) = 0.9750
d)
P(-1 <= Z <= 2) = P(Z <=2 ) - P(Z <= -1)
= P(Z <= 2) - ( 1 - P(Z <= 1) )
= 0.9772 - ( 1- 0.8413)
= 0.8185
e)
P(Z <= 1.87) = 0.9693
f)
P(Z >= -0.53) = P(Z <= 0.53)
= 0.7019
g)
P(Z <= -0.06) = 1 - P(Z <= 0.06)
= 1 - 0.5239
= 0.4761
h)
P(1.12 <= Z <= 2.38) = P(Z <= 2.38)- P(Z <= 1.12)
= 0.9913 - 0.8686
= 0.1227
I )
We have to calculate z such that P(Z <= z) = 0.9750
From Z table, z-score for the probability of 0.975 is 1.96
z = 1.96
Get Answers For Free
Most questions answered within 1 hours.