Question

Assume that the red blood cell counts of woman are normally distributed with a mean of 4.577 and a standard deviation of 0.328. Apply technology or calculator to solve the following questions, make sure you apply the round-off rule correctly:

(a) Find the probability that a randomly selected woman has a red blood cell count below the normal range of 4.1 to 5.4.

(b) Find the probability that a randomly selected woman has a red blood cell count above the normal range of 4.1 to 5.4.

(c) Find P_{80} , the 80th percentile for the red blood
cell counts of women.

(d) If 25 women are randomly selected, find the probability that the mean of their red blood cell counts is less than 4.444.

(e) What percentage of women have red blood cell counts in the normal range from 4.2 to 5.4?

Answer #1

Assume that the red blood cell counts of woman are normally
distributed with a mean of 4.577 and a standard deviation of 0.328.
Apply technology or calculator to solve the following questions,
make sure you apply the round-off rule correctly:
(a) Find the probability that a randomly selected woman has a
red blood cell count below the normal range of 4.1 to 5.4.
(b) Find the probability that a randomly selected woman has a
red blood cell count above the...

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of 5.2 million cells per
microliter and a standard deviation of 0.4 million cells per
microliter. (a) What is the minimum red blood cell count that can
be in the top 28% of counts? (b) What is the maximum red blood
cell count that can be in the bottom 16% of counts? (a)...

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of 5.8 million cells per
microliter and a standard deviation of 0.3 million cells per
microliter.
(a) What is the minimum red blood cell count that can be in the
top 20% of counts?
(b) What is the maximum red blood cell count that can be in the
bottom 10% of counts?
(a)...

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of 5.7 million cells per
microliter and a standard deviation of 0.3 million cells per
microliter. (a) What is the minimum red blood cell count that can
be in the top 21% of counts? (b) What is the maximum red blood
cell count that can be in the bottom 12% of counts?

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of 5.8 million cells per
microliter and a standard deviation of 0.4 million cells per
microliter. (a) What is the minimum red blood cell count that can
be in the top 26% of counts? (b) What is the maximum red blood
cell count that can be in the bottom 13% of counts?

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of
5.6
million cells per microliter and a standard deviation of
0.5
million cells per microliter.(a) What is the minimum red blood
cell count that can be in the top
21%
of counts?(b) What is the maximum red blood cell count that
can be in the bottom
10%
of counts?

The red blood cell counts (in millions of cells per
microliter) for a population of adult males can be approximated by
a normal distribution, with a mean of 5.2 million cells per
microliter and a standard deviation of 0.3 million cells per
microliter. (a) What is the minimum red blood cell count that can
be in the top 22% of counts? (b) What is the maximum red blood
cell count that can be in the bottom 13% of counts?

1. for a women aged 18-24 blood pressures are normally
distributed with a mean of 114.8 and standard deviation of 13.1
.
a. If a women is randomly selected, find the probability that
her blood pressure is greater than 140.
b. If 4 women are selected, find the probability that their mean
blood pressure is greater than 140.
2. use a normal distribution as an approximation to the binomial
distribution. assume that 100 cars are selected and that the
probability...

For women aged 18-24, systolic blood pressures (in mm Hg) are
normally distributed with a mean of 114.8 and a standard deviation
of 13.1. Hypertension is commonly defined as a systolic blood
pressure above 140.
a. If a woman between the ages of 18 and 24 is randomly
selected, find the probability that her systolic blood pressure is
greater than 140.
b. If 4 women in that age bracket are randomly selected, find
the probability that their mean systolic blood...

For women aged 18-24, systolic blood pressures (in mm Hg) are
normally distributed with a mean of 114.8 and a standard deviation
of 13.1. Hypertension is commonly defined as a systolic blood
pressure above 140. a. If a woman between the ages of 18 and 24 is
randomly selected, find the probability that her systolic blood
pressure is greater than 140. b. If 4 women in that age bracket are
randomly selected, find the probability that their mean systolic
blood...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 12 minutes ago

asked 28 minutes ago

asked 30 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 4 hours ago

asked 4 hours ago