Question

A lumber company is making boards that are 2790 millimeters tall. If the boards are too...

A lumber company is making boards that are 2790 millimeters tall. If the boards are too long they must be trimmed, and if they are too short they cannot be used. A sample of 36 boards is taken, and it is found that they have a mean of 2785.5 millimeters. Assume a population standard deviation of 13. Is there evidence at the 0.1 level that the boards are too short and unusable?

Step 4 of 6:

Find the P-value of the test statistic. Round your answer to four decimal places

Homework Answers

Answer #1

Solution :

Below are the null and alternative Hypothesis,
Null Hypothesis, H0: μ = 2790
Alternative Hypothesis, Ha: μ < 2790

Rejection Region
This is left tailed test, for α = 0.1 and df = 35
Critical value of t is -1.306.
Hence reject H0 if t < -1.306

Test statistic,
t = (xbar - mu)/(s/sqrt(n))
t = (2785.5 - 2790)/(13/sqrt(36))
t = -2.08

P-value Approach
P-value = 0.022457

P value = 0.0225


As P-value < 0.10, reject null hypothesis.

Please like if it helps me please please

Thank you so much

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A lumber company is making boards that are 2696 millimeters tall. If the boards are too...
A lumber company is making boards that are 2696 millimeters tall. If the boards are too long they must be trimmed, and if they are too short they cannot be used. A sample of 49boards is taken, and it is found that they have a mean of 2699.1millimeters. Assume a population variance of 225. Is there evidence at the 0.1 level that the boards are too long and need to be trimmed? Step 1 of 6 : State the null...
A lumber company is making boards that are 2727.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2727.0 millimeters tall. If the boards are too long they must be trimmed, and if they are too short they cannot be used. A sample of 21 boards is made, and it is found that they have a mean of 2725.9 millimeters with a standard deviation of 9.0. Is there evidence at the 0.05 level that the boards are either too long or too short? Assume the population distribution is approximately normal.
A lumber company is making boards that are 2578.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2578.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 20 is made, and it is found that they have a mean of 2580.2 millimeters with a variance of 64.00. A level of significance of 0.1 will be used to determine if the boards are either too long or too short. Assume the population distribution...
A lumber company is making boards that are 2923.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2923.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 16 is made, and it is found that they have a mean of 2919.7 millimeters with a standard deviation of 8.0. A level of significance of 0.05 will be used to determine if the boards are either too long or too short. Assume the population...
A lumber company is making boards that are 2716.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2716.0 millimeters tall. If the boards are too long they must be trimmed, and if they are too short they cannot be used. A sample of 23 boards is made, and it is found that they have a mean of 2714.9 millimeters with a standard deviation of 12.0. Is there evidence at the 0.1 level that the boards are either too long or too short? Assume the population distribution is approximately normal....
A lumber company is making boards that are 2563.02563.0 millimeters tall. If the boards are too...
A lumber company is making boards that are 2563.02563.0 millimeters tall. If the boards are too long they must be trimmed, and if the boards are too short they cannot be used. A sample of 1515 is made, and it is found that they have a mean of 2560.52560.5 millimeters with a standard deviation of 8.08.0. A level of significance of 0.10.1 will be used to determine if the boards are either too long or too short. Assume the population...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 34 doors is taken, and it is found that they have a mean of 2048millimeters. Assume a population variance of 441. Is there evidence at the 0.1 level that the doors are too short and unusable? Step 4 of 6: Find the P-value of the test statistic....
A lumber company is making doors that are 2058.0 millimeters tall. If the doors are too...
A lumber company is making doors that are 2058.0 millimeters tall. If the doors are too long they must be trimmed, and if the doors are too short they cannot be used. A sample of 18 is made, and it is found that they have a mean of 2043.0 millimeters with a standard deviation of 21.0. A level of significance of 0.1 will be used to determine if the doors are either too long or too short. Assume the population...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long...
A carpenter is making doors that are 2058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 34doors is taken, and it is found that they have a mean of 2048 millimeters. Assume a population variance of 441. Is there evidence at the 0.1 level that the doors are too short and unusable? Step 6 of 6: Make the decision to reject or fail...
A lumber company is making doors that are 2058.0 millimeters tall. If the doors are too...
A lumber company is making doors that are 2058.0 millimeters tall. If the doors are too long they must be trimmed, and if the doors are too short they cannot be used. A sample of 17 is made, and it is found that they have a mean of 2047.0 millimeters with a standard deviation of 27.0. A level of significance of 0.1 will be used to determine if the doors are either too long or too short. Assume the population...